1.兰州交通大学 交通运输学院,甘肃 兰州 730070
2.中国铁路兰州局集团有限公司 运输部,甘肃 兰州 730031
田小鹏(1987—),男,甘肃天水人,副教授,博士,从事运输组织优化研究;E-mail:xptian@mail.lzjtu.cn
扫 描 看 全 文
田小鹏,牛惠民,柴和天等.考虑高低速列车灵活混行和停站的运行图优化[J].铁道科学与工程学报,2023,20(11):4074-4084.
TIAN Xiaopeng,NIU Huimin,CHAI Hetian,et al.Optimizing train timetable with flexible mixed traffic and skip-stop patterns for different speed trains[J].Journal of Railway Science and Engineering,2023,20(11):4074-4084.
田小鹏,牛惠民,柴和天等.考虑高低速列车灵活混行和停站的运行图优化[J].铁道科学与工程学报,2023,20(11):4074-4084. DOI: 10.19713/j.cnki.43-1423/u.T20230005.
TIAN Xiaopeng,NIU Huimin,CHAI Hetian,et al.Optimizing train timetable with flexible mixed traffic and skip-stop patterns for different speed trains[J].Journal of Railway Science and Engineering,2023,20(11):4074-4084. DOI: 10.19713/j.cnki.43-1423/u.T20230005.
为了提高不同速度列车对轨道资源的占用效率,在高速铁路列车运行图编制过程中,同步优化了高低速列车的混行数量和停站方案。通过构建分层时空网络来刻画不同速度列车运行过程,选取最小高速列车开行数量和OD停站次数来保证旅客基本的出行要求,利用单列车最大停站次数限制列车停站均衡性,建立基于时空弧变量的线性整数规划模型,实现总列车运行成本最小。在拉格朗日松弛框架下,由于所建模型耦合了不同弧变量于一起,需要松弛大量的耦合约束才能实现模型分解,使得该方法难以产生高质量的下界和原问题可行解。为此,利用变量分离技术,引入列车类型和停站方案2类0-1变量,重构优化模型;运用拉格朗日松弛方法,重构模型能够分解为时空路径子问题、列车类型子问题和停站方案子问题;在子问题求解中,构造附加约束保证列车类型指派的可行性,构建替代停站子问题加速算法求解;基于下界对偶信息,设计了两阶段启发式方法用于求解原问题可行解。以京沪高铁为背景,设置多组不同规模算例,利用上述方法进行求解,结果表明所提方法可以在合理计算时间内有效求解大规模问题,能够获得较紧致下界和近似最优解,并在求解质量上优于传统松弛分解方法,展现出良好的求解性能。
To improve the occupancy efficiency of high-speed rail track resources, this paper considered the train timetabling problem integrating flexible mixed traffic and skip-stop patterns for different-speed trains. A layered space-time network was constructed to depict train movements. The minimum required number of high-speed trains and OD-based stops was used to ensure the primary passenger travel demand. The maximum number of single-train stops was required for balance of train stops. Thus, this paper proposed a linear integer programming model with space-time arc variables to minimize train operational costs. Using variable-splitting technique, two types of binary variables associated with train type and skip-stop patterns were separated from the arc-based variables to reformulate the model. Under the Lagrangian relaxation framework, we can decompose the reformulated model into train space-time path subproblems, train type assignment subproblem and skip-stop scheduling subproblem. Furthermore, a set of train-type selection uniqueness constraint was introduced for the train type subproblem to ensure the feasible solution generation. An alternative simplified model was constructed for the train skip-stop subproblem to speed up the subproblem solving, and a dual-solution-based two-stage heuristic method was designed to obtain feasible solutions to the primal problem. Finally, we used several numerical experiments based on Beijing-Shanghai high-speed rail line to verify the effectiveness and efficiency of the proposed approach. The results show that the proposed method can obtain a tight lower bound and a near-optimal solution in a reasonable computational time, and it is superior to the conventional Lagrangian relaxation methods in terms of solution quality.
列车运行图列车混行停站方案变量分离拉格朗日启发式
train timetablemixed trafficskip-stop patternvariable splittingLagrangian heuristic
牛惠民. 轨道列车时刻表问题研究综述[J]. 交通运输系统工程与信息, 2021, 21(5): 114-124.
NIU Huimin. Literature review on rail train timetabling problems[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 114-124.
CHANG Y H, YEH C H, SHEN C C. A multiobjective model for passenger train services planning: Application to Taiwan’s high-speed rail line[J]. Transportation Research Part B, 2000, 34(2): 91-106.
FREYSS M, GIESEN R, MUÑOZ J C. Continuous approximation for skip-stop operation in rail transit [J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 419-433.
BURDETT R L, KOZAN E. Techniques for absolute capacity determination in railways[J]. Transportation Research Part B: Methodological, 2006, 40(8): 616-632.
郝亚秋. 不同速度等级列车混行对高速铁路通过能力影响研究[D]. 北京: 北京交通大学, 2016.
HAO Yaqiu. Study on the influence of mixed trains with different speed grades on the capacity of high-speed railway[D]. Beijing: Beijing Jiaotong University, 2016.
CAPRARA A, FISCHETTI M, TOTH P. Modeling and solving the train timetabling problem[J]. Operations Research, 2002, 50(5): 851-861.
ZHOU Xuesong and ZHONG Ming. Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds [J]. Transportation Research Part B: Methodological, 2007, 41(3): 320-341.
NIU Huimin, ZHOU Xuesong, GAO Ruhu. Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints[J]. Transportation Research Part B, 2015, 76: 117-135.
路超, 周磊山, 陈然. 最大通过能力下高速铁路运行图优化研究[J]. 铁道科学与工程学报, 2018, 15(11): 2749-2754.
LU Chao, ZHOU Leishan, CHEN Ran. Optimization of high-speed railway timetabling based on maximum utilization of railway capacity[J]. Journal of Railway Science and Engineering, 2018, 15(11): 2749-2754.
JIANG Feng, CACCHIANI V, TOTH P. Train timetabling by skip-stop planning in highly congested lines[J]. Transportation Research Part B, 2017, 104: 149-174.
TIAN Xiaopeng, NIU Huimin. Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility[J]. Transportation Research Part B, 2020, 142: 143-173.
刘璐, 孟令云, 李新毅, 等. 考虑旅客需求的停站方案与列车运行图一体化模型与算法[J]. 铁道科学与工程学报, 2019, 16(2): 518-527.
LIU Lu, MENG Lingyun, LI Xinyi, et al. Integrated optimization of stopping pattern and train timetable for passenger demand[J]. Journal of Railway Science and Engineering, 2019, 16(2): 518-527.
YANG Lixing, QI Jianguo, LI Shukai, et al. Collaborative optimization for train scheduling and train stop planning on high-speed railways[J]. Omega, 2016, 64, 57-76.
ŞAHIN G, DIGEHSARA A, BORNDÖRFER R, et al. Multi-period line planning with resource transfers[J]. Transportation Research Part C, 2020, 119: 102726.
ZHANG Yongxiang, PENG Qiyuan, YAO Yu, et al. Solving cyclic train timetabling problem through model reformulation: extended time-space network construct and alternating direction method of multipliers methods [J]. Transportation Research Part B, 2019, 128: 344-379.
DAUZÈRE-PÉRÈS S, DE ALMEIDA D, GUYON O, et al. A Lagrangian heuristic framework for a real-life integrated planning problem of railway transportation resources[J]. Transportation Research Part B: Methodological, 2015, 74: 138-150.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构