1.青岛理工大学 环境与市政工程学院,山东 青岛 266520
2.中车株洲电力机车有限公司,湖南 株洲 412000
3.青岛国际机场集团有限公司,山东 青岛 266520
梁士民(1985—),男,山东临沂人,副教授,博士,从事可再生能源利用方面的研究;E-mail:liangshimin@qut.edu.cn
扫 描 看 全 文
梁士民,张泽群,田忠浩等.列车人工气候室飘雪实验参数设计研究[J].铁道科学与工程学报,2023,20(11):4321-4332.
LIANG Shimin,ZHANG Zequn,TIAN Zhonghao,et al.Parameter design of snow drift experiment in artificial climate chamber of train[J].Journal of Railway Science and Engineering,2023,20(11):4321-4332.
梁士民,张泽群,田忠浩等.列车人工气候室飘雪实验参数设计研究[J].铁道科学与工程学报,2023,20(11):4321-4332. DOI: 10.19713/j.cnki.43-1423/u.T20222432.
LIANG Shimin,ZHANG Zequn,TIAN Zhonghao,et al.Parameter design of snow drift experiment in artificial climate chamber of train[J].Journal of Railway Science and Engineering,2023,20(11):4321-4332. DOI: 10.19713/j.cnki.43-1423/u.T20222432.
列车驾驶员视野能见度直接关乎行驶安全,国际标准规范CEN-TR 16251中要求列车需进行覆雪实验,但目前规范中并未明确飘雪实验参数设置。为明确列车人工气候室飘雪实验参数,并满足均匀覆雪要求,以某列车人工气候室为研究对象,综合考虑冰雪粒径、初始风速和人工气候室风速等参数,依据列车人工气候室飘雪过程冰雪粒子运动特性预测模型,设计9个实验工况,并进行数值模拟及优化。研究结果表明:当列车头模型加入后,会引起气候室内气流组织产生变化,影响冰雪粒子的运动特性,降低预测模型的准确性,进而导致依据预测模型设计的9个实验工况中,仅有5个工况的列车头冰雪粒子捕捉率达到了85%~96.7%,列车头冰雪粒子覆盖率达到80%~85.7%,能满足列车头玻璃均匀覆雪要求,另外4个设计工况未能满足列车头玻璃均匀覆雪要求。进一步地,采用正交实验法优化不满足要求工况中的设计参数,结果显示,优化后列车头冰雪粒子捕捉率最大可达64%~98.1%,列车头冰雪粒子覆盖率可达80.1%~92.2%。本文以“均匀覆雪,兼顾节能”为原则,设计、优化并最终确定了能满足列车头玻璃均匀覆雪要求的9个实验室测试工况,结果可为列车人工气候室飘雪实验提供指导。
The train driver’s field of vision is directly related to driving safety. The international standard specification of CEN-TR 16251 required trains to conduct snow cover experiments, but the current specification did not specify the parameter settings for falling snow experiments. In order to clarify the experimental parameters of falling snow in the train artificial climate chamber and meet the requirements of uniform snow cover, a train artificial climate chamber was used as the research object. Nine experimental conditions were designed and numerically simulated and optimized based on the prediction model of ice and snow particle motion characteristics of snow drifting in the train artificial climate chamber, taking into account the parameters of ice and snow particle size, initial wind speed and wind speed of the artificial climate chamber. The results are drawn as follows. When the train head model is added, it will cause changes in the airflow organization in the climate chamber, affecting the movement characteristics of snow and ice particles and reducing the accuracy of the prediction model, which in turn led to only five of the nine experimental working conditions designed according to the prediction model could meet the requirements of train head glass uniform snow cove. For the five conditions, the train head ice and snow particle capture rate reaches 85%~96.7%, and the train head ice and snow particle coverage rate reaches 80%~85.7%. Nevertheless, the other four design conditions fail to meet the requirements of train head glass uniform snow cover. Further, the orthogonal experiment method is used to optimize the design parameters in the unsatisfied working conditions, and the results show that the optimized train head ice and snow particle capture rate could reach 64%~98.1%, and the train head ice and snow particle coverage rate could reach 80.1%~92.2%. This paper is based on the principle of “uniform snow cover, taking into account energy saving”, and designed, optimized and finally determined the nine laboratory test conditions that could meet the requirements of uniform snow cover on the train head glass, and the results could provide guidance for the train artificial climate chamber snow drifting experiment.
飘雪实验列车人工气候室飘雪预测模型数值模拟均匀系数
experiment of snow driftclimate chamber of trainprediction model of drifting snownumerical simulationuniformity coefficient
GAJERA J, KHUNT U, RUDANI P. Design of windshield wiper with integrated nozzle using 3D-Printing technology[J]. International Journal of Research in Engineering, Science Management, 2021, 4(4): 177-181.
BELLILA A, EL HADI ATTIA M , KABEEL A E, et al. Productivity enhancement of hemispherical solar still using Al2O3-water-based nanofluid and cooling the glass cover[J]. Applied Nanoscience, 2021, 11(4): 1127-1139.
BUCEK O. Research on the comprehensive climate environment test methods for railway vehicles in climate wind tunnel[J]. DEStech Transactions on Engineering and Technology Research, 2017: 11-20.
于志勇, 童冬生, 陈涵. 整车热力学风洞试验室降雪设备和试验方法的研究[J]. 制冷与空调, 2018, 18(5): 34-36.
YU Zhiyong, TONG Dongsheng, CHEN Han. Study on snowfall equipment and test method in vehicle thermodynamic wind tunnel laboratory[J]. Refrigeration and Air-Conditioning, 2018, 18(5): 34-36.
杨玉昆. 造雪机核子器雾化性能仿真分析与实验研究[D]. 哈尔滨: 哈尔滨商业大学, 2021.
YANG Yukun. Simulation analysis and experimental research on spray performance of snowmaker's nucleator nozzl[D]. Harbin: Harbin University of Commerce, 2021.
郭腾, 张颖, 吴敬涛. 降雪环境试验参数分析[J]. 科技创新与应用, 2020(15): 79-80.
GUO Teng, ZHANG Ying, WU Jingtao. Parameter analysis of snowfall environment test[J]. Technology Innovation and Application, 2020(15): 79-80.
WEI Zhao, SHI Yingying, ZHANG H, et al. Design and preliminary experiment of snow making environment simulator[C]// Proc SPIE 12080, 2021, 12080: 669-677.
KIM B K, SUMI Y. Indoor snowfall simulation chamber for realizing uniform snowfall[C]// 2015 IEEE International Conference on Advanced Intelligent Mechatronics. July 7-11, 2015, Busan, Korea. IEEE, 2015: 1541-1545.
ZHOU Xuanyi, LIU Zhenbiao, MA Wenyong, et al. Experimental investigation of snow drifting on flat roofs during snowfall: impact of roof span and snowfall intensity[J]. Cold Regions Science and Technology, 2021, 190: 103356.
JIANG Xintong, YIN Zhixiang, CUI Hanbo. Wind tunnel tests and numerical simulations of wind-induced snow drift in an open stadium and gymnasium[J]. Advances in Civil Engineering, 2020, 2020: 1-15.
颜卫亨, 姬明辉, 代鹏, 等. 攒尖四坡屋面风致雪漂移的数值模拟[J]. 计算力学学报, 2020, 37(5): 585-595.
YAN Weiheng, JI Minghui, DAI Peng, et al. Numerical simulation of snow drifting on the roof of pyramidal hipped roof[J]. Chinese Journal of Computational Mechanics, 2020, 37(5): 585-595.
刘盟盟, 张清文, 钱逸伟, 等. 基于风雪联合试验系统的风致雪漂移试验相似准则研究[J]. 建筑结构 学报, 2019, 40(6): 40-47.
LIU Mengmeng, ZHANG Qingwen, QIAN Yiwei, et al. Research on similarity criterion of wind-induced snowdrift experiments based on wind-snow combined experiment facility[J]. Journal of Building Structures, 2019, 40(6): 40-47.
LÜ Xiaohui, HUANG Ning, TONG Ding. Wind tunnel experiments on natural snow drift[J]. Science China Technological Sciences, 2012, 55(4): 927-938.
任志成. 风吹雪地区典型路基断面积雪分布规律及防治技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
REN Zhicheng. Research on snow distribution pattern and prevention technology of typical subgrade section in wind-blown snow area[D]. Harbin: Harbin Institute of Technology, 2020.
何书勇, 李海飞, 刘庆宽, 等. 边坡坡度对路堤周围积雪分布影响的数值模拟研究[C]// 第29届全国结构工程学术会议论文集(第II册). 武汉, 2020: 67-71.
HE Shuyong, LI Haifei, LIU Qingkuan, et al. Numerical simulation research for influence of slope rate on the snow distribution around the embankment[C]// Proceedings of the 29th National Conference on Structural Engineering (No.II). Wuhan, 2020: 67-71.
王永飞. 基于简单模型试验的寒区高速列车转向架覆雪模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
WANG Yongfei. Snow-accumulation simulation of high-speed train bogie area in frigid zone based on experiment of basic models[D].Harbin: Harbin Institute of Technology, 2020.
蔡华闽.高速列车转向架区域防积雪外形优化研究[D]. 成都: 西南交通大学, 2018.
CAI Huamin. Research on anti-snow in the bogie region of high-speed train using shape optimization[D].Chengdu: Southwest Jiaotong University, 2018.
LI T, ZHANG J, CAI L, et al. Numerical study on the effects of anti-snow deflector on the wind-snow flow underneath a high-speed train[J]. Journal of Applied Fluid Mechanics, 2021, 14(1): 287-299.
CAI Lu, LOU Zhen, LI Tian, et al. Numerical study of dry snow accretion characteristics on the bogie surfaces of a high-speed train based on the snow deposition model[J]. International Journal of Rail Transportation, 2022, 10(3): 393-411.
田忠浩, 梁士民, 张泽群, 等. 列车人工气候室飘雪过程冰雪粒子运动特性模拟研究[J]. 制冷学报, 2022, 43(5): 122-128.
TIAN Zhonghao, LIANG Shimin, ZHANG Zequn, et al. Simulation of motion characteristics of snow and ice particles during snow drift in vehicle artificial climate chamber[J]. Journal of Refrigeration, 2022, 43(5): 122-128.
ANSYS, Inc. ANSYS fluent user’s guide, release 19.0[M]. America: ANSYS, Inc., 2018.
李舟, 薛春晓, 石龙. 风雪流对铁路路堤的响应规律数值模拟分析[J]. 铁道标准设计, 2021, 65(9): 34-39.
LI Zhou, XUE Chunxiao, SHI Long. Numerical simulation analysis of the response law of wind-snow flow to railway embankment[J]. Railway Standard Design, 2021, 65(9): 34-39.
钟沙, 钱博森, 杨明智, 等. 400 km/h速度下编组长度对高速列车隧道交会压力波的影响[J]. 铁道科学与工程学报, 2021, 18(8): 1978-1985.
ZHONG Sha, QIAN Bosen, YANG Mingzhi, et al. The influence of formation length on pressure wave characteristics of high-speed train pass by each other in tunnel with 400 km/h[J]. Journal of Railway Science and Engineering, 2021, 18(8): 1978-1985.
桑嘉宾. 混合粒径风雪流运动的数值模拟[D]. 兰州: 兰州大学, 2012.
SANG Jiabin. Numerical simulations of blowing snow with mixed diameter[D]. Lanzhou: Lanzhou University, 2012.
高峰, 刘明杨, 马冬莉, 等. 城轨列车转向架积雪结冰原因分析及其防治[J]. 中南大学学报(自然科学版), 2020, 51(7): 2039-2047.
GAO Feng, LIU Mingyang, MA Dongli, et al. Analysis of snow and ice in bogie region of city rail train and anti-snow packing design[J]. Journal of Central South University (Science and Technology), 2020, 51(7): 2039-2047.
田忠浩, 胡松涛, 张君, 等. 可移动式一体化人工雨雪冰营造系统的研制[J]. 青岛理工大学学报, 2023, 44(1): 85-92.
TIAN Zhonghao, HU Songtao, ZHANG Jun, et al. Development of a movable integrated artificial rain, snow and ice building system[J]. Journal of Qingdao University of Technology, 2023, 44(1): 85-92.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构