1.江西理工大学 永磁磁浮与轨道交通研究院,江西 赣州 341000
2.江西省磁悬浮技术重点实验室,江西 赣州341000
3.中国科学院 赣江创新研究院,江西 赣州 341000
杨杰(1979—),男,安徽蚌埠人,教授,博士,从事轨道交通控制、智能控制研究;E-mail:yangjie@jxust.edu.cn
扫 描 看 全 文
秦耀,杨杰,江聚松等.基于改进自抗扰的永磁电磁混合 悬浮型磁浮球控制方法[J].铁道科学与工程学报,2023,20(11):4333-4343.
QIN Yao,YANG Jie,JIANG Jusong,et al.Permanent magnet electromagnetic hybrid levitation magnetic levitation ball control method based on improved auto disturbance rejection[J].Journal of Railway Science and Engineering,2023,20(11):4333-4343.
秦耀,杨杰,江聚松等.基于改进自抗扰的永磁电磁混合 悬浮型磁浮球控制方法[J].铁道科学与工程学报,2023,20(11):4333-4343. DOI: 10.19713/j.cnki.43-1423/u.T20222428.
QIN Yao,YANG Jie,JIANG Jusong,et al.Permanent magnet electromagnetic hybrid levitation magnetic levitation ball control method based on improved auto disturbance rejection[J].Journal of Railway Science and Engineering,2023,20(11):4333-4343. DOI: 10.19713/j.cnki.43-1423/u.T20222428.
永磁电磁混合悬浮(PEMS)系统在降低能耗和增大悬浮气隙方面优势明显,但其非线性特征和控制难度也相对增加。针对PEMS系统中未知干扰和输入信号噪声引起的控制性能下降问题,提出一种基于改进型Levent微分器(ILevent)的自抗扰控制(ADRC)方法。首先,结合电磁悬浮(EMS)型磁浮球系统的控制结构,搭建PEMS型磁浮球控制系统试验台,并对PEMS型磁浮球系统进行动力学建模,判断系统的稳定性和能观能控特性;其次,采用双曲正切函数对Levent微分器进行改进,降低输出信号抖振,分析改进前后Levent微分器以及ADRC中TD微分器的输出性能,充分融合Levent微分器对信号噪声的鲁棒性和ADRC对干扰的估计与补偿优势,设计了ILevent-ADRC控制器;并利用带约束因子的模拟退火-粒子群(SA-CFPSO)优化算法有效的解决了ILevent-ADRC参数多、关联性强等制约问题;最后,分别对传统ADRC、PID控制和ILevent-ADRC方法在PEMS型磁浮球控制试验台上进行对比实验,验证所提方法的有效性和优越性。实验结果表明:相比于传统ADRC和PID控制方法,所提ILevent-ADRC方法有效提升了PEMS型磁浮球系统的控制性能,不仅能够有效地抑制测量信号噪声对系统的影响,而且还对系统悬浮气隙大范围变化和运行过程中受到的未知扰动具有更强的适应性和鲁棒性。研究成果为磁悬浮智能控制技术的实际应用提供了理论参考,同时对于永磁电磁混合悬浮这一类复杂的非线性系统的控制,也具有较好的参考价值。
Permanent magnet electromagnetic hybrid suspension (PEMS) system has obvious advantages in reducing energy consumption and increasing suspension air gap, but its nonlinear characteristics and control difficulty are relatively increased. Aiming at the problem of control performance degradation caused by unknown interference and input signal noise in the PEMS system, an auto disturbance rejection control (ADRC) method based on improved Levent differentiator (ILevent) was proposed. Firstly, combining the control structure of the electromagnetic levitation (EMS) type magnetic levitation ball system, the PEMS type magnetic levitation ball control system test bed was built, and the dynamic modeling of the PEMS type magnetic levitation ball system was carried out to judge the stability and the characteristics of the system. Secondly, the hyperbolic tangent function was used to improve the Levent differentiator, reduce the output signal chattering, analyze the output performance of the Levent differentiator before and after the improvement and the TD differentiator in ADRC, fully integrate the robustness of the Levent differentiator to signal noise and the advantages of ADRC to interference estimation and compensation, and design the ILevent-ADRC controller. The simulated annealing particle swarm optimization (SA-CFPSO) algorithm with constraints was used to effectively solve the constraints of ILevent-ADRC, such as multiple parameters and strong correlation. Finally, the traditional ADRC, PID control and ILevent-ADRC methods were compared on the PEMS-type magnetic levitation ball control test-bed to verify the effectiveness and superiority of the proposed methods. The experimental results show that compared with the traditional ADRC and PID control methods, the proposed ILevent-ADRC method effectively improves the control performance of the PEMS-based magnetic levitation system. It can not only effectively suppress the impact of measurement signal noise on the system, but also has stronger adaptability and robustness to the large range change of the levitation air gap of the system and the unknown disturbance in the operation processb. The research results can provide a theoretical reference for the practical application of magnetic suspension intelligent control technology, and also have a good reference value for the control of complex nonlinear systems such as permanent magnet electromagnetic hybrid suspension.
PEMS型磁浮球控制系统ILevent-ADRC方法SA-CFPSO优化算法控制性能
PEMS magnetic levitation ball control systemILevent-ADRC methodSA-CFPSO optimization algorithmcontrol performance
张维煜, 朱熀秋, 袁野. 磁悬浮轴承应用发展及关键技术综述[J]. 电工技术学报, 2015, 30(12): 12-20.
ZHANG Weiyu, ZHU Huangqiu, YUAN Ye. Study on key technologies and applications of magnetic bearings[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 12-20.
刘林芽, 宋立忠, 秦佳良, 等. 轨道交通桥梁结构噪声研究综述[J]. 交通运输工程学报, 2021, 21(3): 1-19.
LIU Linya, SONG Lizhong, QIN Jialiang, et al. Review on structure-borne noise of rail transit bridges[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 1-19.
ZHANG Chi, LU Yonghua, LIU Guancheng, et al. Research on one-dimensional motion control system and method of a magnetic levitation ball[J]. The Review of Scientific Instruments, 2019, 90(11): 115005.
QIN Yao, YANG Jie, LIU Shuyun, et al. Application of fuzzy PID in permanent magnet electromagnetic hybrid suspension control[C]// International Conference on Electrical and Information Technologies for Rail Transportation. Singapore: Springer, 2022: 723-732.
AL AELA A M , KENNE J P, MINTSA H A. Adaptive neural network and nonlinear electrohydraulic active suspension control system[J]. Journal of Vibration and Control, 2022, 28(3/4): 243-259.
ZHANG Menghua, JING Xingjian. A bioinspired dynamics-based adaptive fuzzy SMC method for half-car active suspension systems with input dead zones and saturations[J]. IEEE Transactions on Cybernetics, 2021, 51(4): 1743-1755.
李杰, 齐晓慧, 万慧, 等. 自抗扰控制: 研究成果总结与展望[J]. 控制理论与应用, 2017, 34(3): 281-295.
LI Jie, QI Xiaohui, WAN Hui, et al. Active disturbance rejection control: theoretical results summary and future researches[J]. Control Theory & Applications, 2017, 34(3): 281-295.
SUN Feng, LIU Jiacun, JIN Junjie, et al. Active disturbance rejection control algorithm of permanent magnetic suspension system[C]// 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR). March 4-6, 2021, Tokoname, Japan. IEEE, 2021: 52-54.
黄翠翠, 李晓龙, 杨洋, 等. 基于自抗扰技术的机械-电磁悬浮复合隔振控制[J]. 西南交通大学学报, 2022, 57(3): 582-587, 617.
HUANG Cuicui, LI Xiaolong, YANG Yang, et al. Mechanical-electromagnetic suspension compound vibration isolation control based on active disturbance rejection technology[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 582-587, 617.
李冰林, 曾励, 张鹏铭, 等. 主动磁悬浮轴承的滑模自抗扰解耦控制[J]. 电机与控制学报, 2021, 25(7): 129-138.
LI Binglin, ZENG Li, ZHANG Pengming, et al. Sliding mode active disturbance rejection decoupling control for active magnetic bearings[J]. Electric Machines and Control, 2021, 25(7): 129-138.
何凌云, 佘龙华, 赵春霞. 磁浮列车悬浮系统的双环自抗扰控制[J]. 兵工自动化, 2006, 25(11): 59-61.
HE Lingyun, SHE Longhua, ZHAO Chunxia. Double loop active-disturbance-rejection-controller for levitation system of maglev train[J]. Ordnance Industry Automation, 2006, 25(11): 59-61.
XIANG Biao, GUO Qingyuan, WONG W. Active disturbance rejection control of test sample in electrostatic suspension system[J]. Mechanical Systems and Signal Processing, 2021, 148: 107187.
WANG Juan, ZHANG Hehong, XIAO Gaoxi, et al. A comparison study of tracking differentiator and robust exact differentiator[C]// 2020 Chinese Automation Congress (CAC). November 6-8, 2020, Shanghai, China. IEEE, 2021: 1359-1364.
彭月, 苏芷玄, 杨杰, 等. 基于PSO-BP-PID单点混合悬浮球控制算法研究[J]. 铁道科学与工程学报, 2022, 19(6): 1511-1520.
PENG Yue, SU Zhixuan, YANG Jie, et al. On hybrid single-point magnetic levitation ball control algorithm based on BP-PID[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1511-1520.
苏芷玄, 杨杰, 彭月, 等. 单点混合磁悬浮系统的自抗扰控制仿真研究[J]. 铁道科学与工程学报, 2022, 19(4): 864-873.
SU Zhixuan, YANG Jie, PENG Yue, et al. Simulating active disturbance-resistantcontrol of single-point hybrid magnetic suspension system[J]. Journal of Railway Science and Engineering, 2022, 19(4): 864-873.
陈萍, 史天成, 于明月, 等. 中低速磁浮列车滑模自抗扰悬浮控制算法[J]. 铁道科学与工程学报, 2023, 20(2): 682-693.
CHEN Ping, SHI Tiancheng, YU Mingyue, et al. Sliding mode active disturbance rejection levitation control algorithm of the medium-and low-speed maglev vehicles[J]. Journal of Railway Science and Engineering, 2023, 20(2): 682-693.
韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002, 9(3): 13-18.
HAN Jingqing. From PID technique to active disturbances rejection control technique[J]. Basic Automation, 2002, 9(3): 13-18.
冯建鑫, 王雅雷, 王强, 等. 改进蜻蜓算法的快速反射镜自抗扰控制[J]. 光学 精密工程, 2021, 29(6): 1301-1310.
FENG Jianxin, WANG Yalei, WANG Qiang, et al. Active disturbance rejection controller of fast steering mirror based on improved dragonfly algorithm[J]. Optics and Precision Engineering, 2021, 29(6): 1301-1310.
CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
闫群民, 马瑞卿, 马永翔, 等. 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报, 2021, 48(4): 120-127.
YAN Qunmin, MA Ruiqing, MA Yongxiang, et al. Adaptive simulated annealing particle swarm optimization algorithm[J]. Journal of Xidian University, 2021, 48(4): 120-127.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构