1.中国铁路设计集团有限公司 土建工程设计研究院,天津 300308
孟繁增(1988—),男,河北衡水人,高级工程师,从事桥梁设计研究;E-mail:mengfanzeng@crdc.com
扫 描 看 全 文
孟繁增.基于索长迭代的斜拉桥整体线形优化实用算法[J].铁道科学与工程学报,2023,20(11):4266-4276.
MENG Fanzeng.Practical algorithm for optimizing the integral geometrical shape of cable-stayed bridges based on cable length iteration[J].Journal of Railway Science and Engineering,2023,20(11):4266-4276.
孟繁增.基于索长迭代的斜拉桥整体线形优化实用算法[J].铁道科学与工程学报,2023,20(11):4266-4276. DOI: 10.19713/j.cnki.43-1423/u.T20222384.
MENG Fanzeng.Practical algorithm for optimizing the integral geometrical shape of cable-stayed bridges based on cable length iteration[J].Journal of Railway Science and Engineering,2023,20(11):4266-4276. DOI: 10.19713/j.cnki.43-1423/u.T20222384.
针对密索体系斜拉桥整体线形优化问题,提出一种基于索长迭代的实用算法。该算法以无应力索长作为施调量,以主梁和主塔的位移值作为受调量,以锚点位移误差在斜拉索方向上的投影值作为修正值,代入索长-位移等代矩阵进行逐步逼近的正向迭代计算。首先,采用单索结构阐述算法原理,进行理论验证,并推广至密索结构;然后,进一步给出算法的具体实现方法并编制程序;最后,采用某无砟轨道斜拉桥进行应用验证。研究结果表明:算法收敛于理论解,收敛速度与梁索刚度比有关,当梁索刚度比,k,2,/,k,1,≤1.01时,迭代3~5次其误差降低至5%以内。随着迭代次数的增加,位移残差单调递减并逐渐稳定,索长调整量逐渐逼近于零位移法最小二乘解,证明了本文算法的收敛稳定性。当由混合梁、辅助墩等引起主梁刚度差异或局部变化时,本文解的均匀性优于零位移法最小二乘解。迭代18次,用时1.99 s即可得到一组合理的索长调整量,主梁及主塔线形偏差小于5.0 mm,线形平顺,索力均匀合理。本文算法可快速提供一系列接近零位移(或目标线形)的索长调整解,几何关系清晰,线形与索力均匀,实用性强,可应用于密索体系斜拉桥设计和施工控制中的线形优化调索。
A practical algorithm based on cable length iteration was proposed for the integral geometrical shape optimization of a cable-stayed bridge with a multi-cable system. The proposed algorithm considered the unstressed cable length as the adjusting quantity, the displacements of the main girder and the main tower as the adjusted quantities and the projection value of the displacement error of the anchor point on the side of the cable as the correction value and then substitutes them into the cable length-displacement equivalent matrix for iterative forward calculations. The principle of the algorithm is explained for a single-cable structure, theoretically verified and then extended to a multi-cable structure. The implementation of the algorithm was presented, and programming was completed. Finally, a ballastless track cable-stayed bridge was used to verify the application of the algorithm. The algorithm converged to the theoretical solutions for single-cable structures, and the convergence rate was related to the beam-to-cable stiffness ratio. When the stiffness ratio,k,2,/,k,1, is ≤ 1.01, the error is reduced to 5% or below after 3~5 iterations. The study of 300 000 iterations of the multi-cable structure shows that as the number of iterations increases, the residual displacement decreases monotonously and gradually stabilises, and the cable length adjustment gradually approaches the least square solution of the zero displacement method. This confirms the convergence stability of the proposed algorithm. When the difference in stiffness or the local change is caused by a hybrid girder or an auxiliary pier, the uniformity of the solution in this paper is better than the least square solution of the zero displacement method. As verified in actual application, a reasonable set of cable length adjustment quantities can be obtained in 1.99 s with 18 iterations, the geometrical shape deviation of the main girder and the main tower is less than 5.0 mm, and a smooth geometrical shape, as well as uniform and reasonable cable tension values, can be obtained. The proposed algorithm can quickly provide a series of cable length adjustments close to zero displacement (or to the target alignment). Given its clear geometrical relationship, uniform geometrical shape and cable force and practical applications, the algorithm can be applied for integral geometrical shape optimization in the design and construction control of a cable-stayed bridge with a multi-cable system.
索长迭代斜拉桥线形优化实用算法
cable length iterationcable-stayed bridgeintegral geometrical shape optimizationpractical algorithm
龚俊虎. 高速铁路大跨度混凝土斜拉桥设计研究[J]. 铁道科学与工程学报, 2020, 17(7): 1611-1619.
GONG Junhu. Design and research of long-span concrete cable-stayed bridge for high-speed railway[J]. Journal of Railway Science and Engineering, 2020, 17(7): 1611-1619.
何旭辉, 杨贤康, 朱伟. 钢桁梁斜拉桥成桥索力优化的实用算法[J]. 铁道学报, 2014, 36(6): 99-106.
HE Xuhui, YANG Xiankang, ZHU Wei. Practical algorithm for optimization of cable forces in completion of steel truss girder cable-stayed bridges[J]. Journal of the China Railway Society, 2014, 36(6): 99-106.
苑仁安, 秦顺全, 肖海珠. 一种斜拉桥目标状态索力快速精准确定的方法[J]. 桥梁建设, 2020, 50(2): 25-30.
YUAN Ren-an,QIN Shunquan,XIAO Haizhu.A method to rapidly and accurately determine target cable forces for cable-stayed bridge[J]. Bridge Construction, 2020, 50(2): 25-30.
苑仁安, 秦顺全, 郑清刚, 等.一种新型缆索支承桥梁快速精准调索方法: CN105138723B[P]. 2018-02-23.
YUAN Renan, QIN Shunquan, ZHENG Qinggang, et al. Novel fast and accurate cable adjusting technique for cable-supported bridge: CN105138723B[P]. 2018-02-23.
单德山, 张潇, 顾晓宇, 等. 基于多层感知深度学习的大跨度斜拉桥索力调整[J]. 桥梁建设, 2021, 51(1): 14-20.
SHAN Deshan, ZHANG Xiao, GU Xiaoyu, et al. Cable force adjustment for long-span cable-stayed bridge based on multilayer perceptron deep learning[J]. Bridge Construction, 2021, 51(1): 14-20.
李研. 基于乘子-Newton优化算法确定钢箱梁斜拉桥的合理成桥状态[J]. 武汉理工大学学报, 2015, 37(5): 81-89.
LI Yan. Reasonable completed state for cable-stayed bridge with steel box girder based on Newton method[J]. Journal of Wuhan University of Technology, 2015, 37(5): 81-89.
李延强, 刘晓慧, 陈泽林, 等. 基于索力响应面法的斜拉桥模型修正[J]. 铁道学报, 2021, 43(2): 168-174.
LI Yanqiang, LIU Xiaohui, CHEN Zelin, et al. Updating of cable-stayed bridge model based on cable force response surface method[J]. Journal of the China Railway Society, 2021, 43(2): 168-174.
FENG Yue, LAN Cheng, BRISEGHELLA B, et al. Cable optimization of a cable-stayed bridge based on genetic algorithms and the influence matrix method[J]. Engineering Optimization, 2022, 54(1): 20-39.
HA M H, VU Q A, TRUONG V H. Optimum design of stay cables of steel cable-stayed bridges using nonlinear inelastic analysis and genetic algorithm[J]. Structures, 2018, 16: 288-302.
GUO Junjun, YUAN Wancheng, DANG Xinzhi, et al. Cable force optimization of a curved cable-stayed bridge with combined simulated annealing method and cubic B-Spline interpolation curves[J]. Engineering Structures, 2019, 201: 109813.
LONETTI P, PASCUZZO A. Optimum design analysis of hybrid cable-stayed suspension bridges[J]. Advances in Engineering Software, 2014, 73(5): 53-66.
SANTOS C A N, EL DAMATTY A A, PFEIL M S, et al. Structural optimization of two-girder composite cable-stayed bridges under dead and live loads[J]. Canadian Journal of Civil Engineering, 2020, 47(8): 939-953.
WANG Zhangming, ZHANG Nan, DU Xianting, et al. Multiobjective optimization of cable forces and counterweights for universal cable-stayed bridges[J]. Journal of Advanced Transportation, 2021, 2021: 1-13.
周云岗. 大跨径多塔斜拉桥恒载索力优化方法[J]. 重庆交通大学学报(自然科学版), 2017, 36(2): 1-6.
ZHOU Yungang. Optimization method of cable force for large-span multi-tower cable-stayed bridges under dead load[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(2): 1-6.
李乔, 卜一之, 张清华. 基于几何控制的全过程自适应施工控制系统研究[J]. 土木工程学报, 2009, 42(7): 69-77.
LI Qiao, BU Yizhi, ZHANG Qinghua. Whole-procedure adaptive construction control system based on geometry control method[J]. China Civil Engineering Journal, 2009, 42(7): 69-77.
孟繁增. 多塔斜拉桥合龙方法及其影响分析[D]. 成都: 西南交通大学, 2012.
MENG Fanzeng. Study on closrue scheme and its influence on structural state for multi-pylon cable-stayed bridges[D]. Chengdu: Southwest Jiaotong University,2012.
梅秀道, 卢亦焱. 基于索长的大跨径斜拉桥施工控制计算方法及应用[J]. 桥梁建设, 2019, 49(6): 42-47.
MEI Xiudao, LU Yiyan. Construction control calculation method for long-span cable-stayed bridge based on cable length and application[J]. Bridge Construction, 2019, 49(6): 42-47.
孟庆成, 齐欣, 李乔, 等. 千米级斜拉桥斜拉索相关参数计算方法[J]. 桥梁建设, 2009, 39(2): 58-60.
MENG Qingcheng , QI Xin, LI Qiao, et al. Algorithm for relevant parameters of stay cables of cable-stayed bridge with span length of 1000 m scale[J]. Bridge Construction, 2009, 39(2): 58-60.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构