1.中南大学 土木工程学院,湖南 长沙 410075
2.高速铁路建造技术国家工程研究中心,湖南 长沙 410075
3.湖南省交通规划勘察设计院有限公司,湖南 长沙 410075
盛兴旺(1966—),男,湖南长沙人,教授,博士,从事梁轨相互作用研究;E-mail:shengxingwang@163.com
扫 描 看 全 文
郑纬奇,陈奏捷,盛兴旺等.高速铁路拱塔斜拉桥上无砟轨道隔离层变形协调性能研究[J].铁道科学与工程学报,2023,20(11):4256-4265.
ZHENG Weiqi,CHEN Zoujie,SHENG Xingwang,et al.Deformation coordination performance of ballastless track isolation layer on high-speed railway arch supported tower cable-stayed bridge[J].Journal of Railway Science and Engineering,2023,20(11):4256-4265.
郑纬奇,陈奏捷,盛兴旺等.高速铁路拱塔斜拉桥上无砟轨道隔离层变形协调性能研究[J].铁道科学与工程学报,2023,20(11):4256-4265. DOI: 10.19713/j.cnki.43-1423/u.T20222376.
ZHENG Weiqi,CHEN Zoujie,SHENG Xingwang,et al.Deformation coordination performance of ballastless track isolation layer on high-speed railway arch supported tower cable-stayed bridge[J].Journal of Railway Science and Engineering,2023,20(11):4256-4265. DOI: 10.19713/j.cnki.43-1423/u.T20222376.
为保证高速铁路大跨度桥上无砟轨道服役寿命,提高行车安全性,需对服役环境中高速铁路桥上无砟轨道隔离层变形协调性能进行研究。以高速铁路拱塔斜拉桥为工程背景,考虑桥上无砟轨道隔离层力学特性,建立拱塔斜拉桥-无砟轨道体系精细化分析模型,研究温度以及列车荷载组合作用,设置橡胶和土工布2种不同类型隔离层的拱塔斜拉桥-无砟轨道层间变形协调性能。结果表明:整体升温与索梁温差对桥上无砟轨道层间变形的影响不大,日照温度效应是引起桥上无砟轨道层间离缝的主要原因;采用土工布隔离层无砟轨道变形跟随性差,而橡胶隔离层能够有效改善桥上无砟轨道各结构层之间的变形协调性能,且体刚度较小的橡胶隔离层能有效减少层间离缝程度;温度效应以及列车荷载组合作用下,拱塔斜拉桥主梁各支承处、主梁非拉索区的无砟轨道隔离层层间变形协调性较差,均出现了轨道层间离缝现象。层间离缝最大值出现在塔梁固结区域。建议背景工程主梁拉索区CRTS-III型板式无砟轨道选用体刚度0.1 N/mm,3,的橡胶隔离层,主梁各支承和非拉索区CRTS-III型板式无砟轨道选用体刚度0.05 N/mm,3,的橡胶隔离层,以改善拱塔斜拉桥上无砟轨道的适用性。本文研究结论可为大跨度桥上无砟轨道的推广应用提供技术参考。
To ensure the service life of ballastless track of high-speed railway long-span bridge and improve driving safety, it is necessary to study the deformation coordination performance of ballastless track isolation layer on high-speed railway bridge in service environment. Taking the high-speed railway arch supported tower cable-stayed bridge of high-speed railway as the engineering background, considering the mechanical characteristics of ballastless track isolation layer, the refined analysis model of arch supported tower cable-stayed bridge-ballastless track system was established. The coordinated deformation performance of arch supported tower cable-stayed bridge-ballastless track layer with two different types of isolation layers, rubber and the geotextile, was analyzed under the combined effect of temperature effect and train load. The results are drawn as follows. The overall temperature increasing and the temperature difference of the cable-girder have little impact on the interlayer effect. The solar temperature effect is the primary cause of interlayer separation . The deformation followability of ballastless track with geotextile isolation layer is inferior, while the rubber isolation layer can effectively improve the deformation coordination performance between the structural layers on the bridge. The rubber isolation layer with smaller stiffness can effectively reduce the degree of interlayer separation. Under the combined effect of the temperature effect and train load, the deformation coordination performance of ballastless track isolation layers at each support and the non-tensioned area of the main girder are relatively inferior. The interlayer separation occurs. The maximum interlayer separation in the area of tower-girder consolidation. It is suggested that the rubber isolation layer is selected for background projects to improve the applicability of ballastless track on bridges: 0.1 N/mm,3, rubber isolation layer is selected for CRTS-III slab track laid in the cable area of the main girder. 0.05 N/mm,3, rubber isolation layer is selected for CRTS-III slab track laid near each supporting and non-cable area of the main girder,so as to improve the applicability of ballastless track on bridges. The results can provide technical reference for the promotion and application of ballastless track on large span bridge.
拱塔斜拉桥无砟轨道橡胶隔离层土工布隔离层变形协调层间离缝
arch supported tower cable-stayed bridgeballastless trackrubber isolation layergeotextile isolation layerdeformation coordinationinterlayer separation
鲜荣, 徐源庆, 刘得运, 等. 黄茅海超大跨三塔斜拉桥结构体系研究[J]. 桥梁建设, 2021, 51(6): 9-15.
XIAN Rong, XU Yuanqing, LIU Deyun, et al. Research on structural system of a super-long-span triple-pylon cable-stayed bridge of Huangmaohai link[J]. Bridge Construction, 2021, 51(6): 9-15.
李的平, 文望青, 严爱国, 等. 大跨度斜拉桥上铺设无砟轨道工程实践[J]. 铁道工程学报, 2020, 37(10): 78-82.
LI Diping, WEN Wangqing, YAN Aiguo, et al. Engineering practice of laying ballastless track on long span cable-stayed bridge[J]. Journal of Railway Engineering Society, 2020, 37(10): 78-82.
ZHU Shengyang, CAI Chengbiao. Interface damage and its effect on vibrations of slab track under temperature and vehicle dynamic loads[J]. International Journal of Non-Linear Mechanics, 2014, 58: 222-232.
DAI Gonglian, SU Miao. Full-scale field experimental investigation on the interfacial shear capacity of continuous slab track structure[J]. Archives of Civil and Mechanical Engineering, 2016, 16(3): 485-493.
赵国堂, 刘钰. CRTSⅡ型板式无砟轨道结构层间离缝机理研究[J]. 铁道学报, 2020, 42(7): 117-126.
ZHAO Guotang, LIU Yu. Mechanism analysis of delamination of CRTSⅡ slab ballastless track structure[J]. Journal of the China Railway Society, 2020, 42(7): 117-126.
朱志辉, 闫铭铭, 李晓光, 等. 大跨度斜拉桥—无砟轨道结构变形适应性研究[J]. 中国铁道科学, 2019, 40(2): 16-24.
ZHU Zhihui, YAN Mingming, LI Xiaoguang, et al. Deformation adaptability of long-span cable-stayed bridge and ballastless track structure[J]. China Railway Science, 2019, 40(2): 16-24.
胡松林, 周小林, 徐庆元, 等. 温度梯度荷载作用下CRTSⅡ型轨道板与CA砂浆界面损伤扩展研究[J]. 铁道科学与工程学报, 2019, 16(9): 2143-2149.
HU Songlin, ZHOU Xiaolin, XU Qingyuan, et al. The study of interface damage extension between CRTSⅡ slab and CA mortar under temperature gradient[J]. Journal of Railway Science and Engineering, 2019, 16(9): 2143-2149.
SUNG D, CHANG S. Nonlinear behavior of rail fastening system on slab track at railway bridge ends: FEA and experimental study[J]. Engineering Structures, 2019, 195: 84-95.
ZHOU Rui, ZHU Xuan, REN Weixin, et al. Thermal evolution of CRTS Ⅱ slab track under various environmental temperatures: experimental study[J]. Construction and Building Materials, 2022, 325: 126699.
郑纬奇, 盛兴旺, 朱志辉, 等. 高速铁路大跨度斜拉桥上无砟轨道振动特性试验研究[J]. 土木工程学报, 2023, 56(5): 79-88.
ZHENG Weiqi, SHENG Xingwang, ZHU Zhihui, et al. Experimental study on vibration characteristics of ballastless track on long-span cable-stayed bridge of high-speed railway[J]. China Civil Engineering Journal, 2023, 56(5): 79-88.
闫斌, 谢浩然, 潘文彬, 等. 大跨度混合梁斜拉桥-轨道系统受力特性[J]. 铁道工程学报, 2019, 36(9): 11-16.
YAN Bin, XIE Haoran, PAN Wenbin, et al. Characteristics of interaction between tracks and long-span cable-stayed bridge with steel-concrete composite beam[J]. Journal of Railway Engineering Society, 2019, 36(9): 11-16.
闫斌, 程瑞琦, 谢浩然, 等. 极端温度作用下桥上CRTSⅡ型无砟轨道受力特性[J]. 铁道科学与工程学报, 2021, 18(4): 830-836.
YAN Bin, CHENG Ruiqi, XIE Haoran, et al. Mechanical characteristics of CRTSⅡ ballastless track on bridge due to extreme temperature load[J]. Journal of Railway Science and Engineering, 2021, 18(4): 830-836.
宋宏芳, 刘晓贺, 李佰林. 季节性冻土区高速铁路新型防冻胀路基力学特性研究[J]. 铁道学报, 2018, 40(11): 98-104.
SONG Hongfang, LIU Xiaohe, LI Bailin. Study on new anti-frost heaving filling material and structure mechanical properties of high-speed railway subgrade in seasonal frozen soil region[J]. Journal of the China Railway Society, 2018, 40(11): 98-104.
盛兴旺, 郑严煌, 郑纬奇, 等. 基于实时阴影技术的混凝土箱梁竖向温度梯度模式[J]. 华南理工大学学报(自然科学版), 2020, 48(10): 40-47.
SHENG Xingwang, ZHENG Yanhuang, ZHENG Weiqi, et al. Vertical temperature gradient model of concrete box girders based on real-time shadow technology[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(10): 40-47.
MENG Qingling, ZHU Jinsong. Fine temperature effect analysis-based time-varying dynamic properties evaluation of long-span suspension bridges in natural environments[J]. Journal of Bridge Engineering, 2018, 23(10): 4018075.
盛兴旺, 郑纬奇, 朱志辉, 等. 小半径曲线刚构箱梁桥日照时变温度场与温度效应[J]. 交通运输工程学报, 2019, 19(4): 24-34.
SHENG Xingwang, ZHENG Weiqi, ZHU Zhihui, et al. Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 24-34.
ZHU Jinsong, MENG Qingling. Effective and fine analysis for temperature effect of bridges in natural environments[J]. Journal of Bridge Engineering, 2017, 22(6): 04017017.
徐弘毅. 日照作用下拱承塔斜拉桥-无砟轨道相互作用分析[D]. 长沙: 中南大学, 2021.
XU Hongyi. Analysis of interaction between arch tower cable-stayed bridge and ballastless track under solar radiation[D]. Changsha: Central South University, 2021.
中华人民共和国交通运输部. 公路斜拉桥设计规范: JTG/T 3365-01—2020[S]. 北京: 人民交通出版社, 2020.
Ministry of Transport of the People’s Republic of China.Specifications for design of highway cable-stayed bridge: JTG/T 3365-01—2020[S]. Beijing: China Communications Press, 2020.
SHENG Xingwang, ZHENG Weiqi, ZHU Zhihui, et al. Properties of rubber under-ballast mat used as ballastless track isolation layer in high-speed railway[J]. Construction and Building Materials, 2020, 240: 117822.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构