1.中南大学 土木工程学院,湖南 长沙 410075
2.高速铁路建造技术国家工程研究中心,湖南 长沙 410075
敬海泉(1987—),男,重庆人,副教授,博士,从事新能源结构抗风和高速铁路车-桥系统抗风研究;E-mail:hq.jing@csu.edu.cn
扫 描 看 全 文
于向东,张贺,敬海泉.列车制动参数对大跨度悬索桥梁轨相互作用影响研究[J].铁道科学与工程学报,2023,20(11):4243-4255.
YU Xiangdong,ZHANG He,JING Haiquan.Influence of train braking parameters on beam rail interaction of long-span suspension bridge[J].Journal of Railway Science and Engineering,2023,20(11):4243-4255.
于向东,张贺,敬海泉.列车制动参数对大跨度悬索桥梁轨相互作用影响研究[J].铁道科学与工程学报,2023,20(11):4243-4255. DOI: 10.19713/j.cnki.43-1423/u.T20222351.
YU Xiangdong,ZHANG He,JING Haiquan.Influence of train braking parameters on beam rail interaction of long-span suspension bridge[J].Journal of Railway Science and Engineering,2023,20(11):4243-4255. DOI: 10.19713/j.cnki.43-1423/u.T20222351.
为研究列车制动下大跨度悬索桥无缝线路纵向力的分布规律,基于ANSYS软件和梁轨相互作用理论,建立大跨度悬索桥梁轨一体化动力分析模型,根据CRH动车组列车的制动力时程,分别研究制动停车位置、制动初速度、列车种类、列车挠曲力和制动力等因素对钢轨附加应力和梁轨相对位移的动力、静力影响。结果表明:由于动力计算考虑到前一荷载步对后一荷载步的影响以及线路纵向阻力滞回特性的影响,动力、静力计算结果差别显著,传统静力计算低估了列车荷载作用下钢轨的受力,在实际工程应用时有必要按动力方法计算列车荷载作用下大跨度悬索桥梁轨相互作用问题;制动停车位置对钢轨附加拉应力和梁轨相对位移增量影响显著,列车制动停止于主跨跨中位置为本文研究大跨度悬索桥梁轨相互作用所选4种典型工况中的最不利工况;列车制动力对梁端位置钢轨附加拉应力和梁轨相对位移影响显著,列车挠曲力对主桥范围内钢轨附加应力和梁轨纵向位移的分布规律影响显著,并与钢轨附加压应力峰值大小表现出较强的相关性;CRH,5,和CRH,2,型动车组列车为研究CRH型动车组制动下大跨度悬索桥梁轨相互作用的不利车型,其中CRH,5,型动车组最不利制动方式为最大常规制动;由于CRH动车组列车制动初速度不影响列车制动力峰值大小,大跨度悬索桥梁轨相互作用对制动初速度因素变化并不敏感。研究成果可为完善列车制动下桥上无缝线路设计和计算提供参考和借鉴。
In order to study the distribution law of longitudinal force of continuous welded rail (CWR) of long-span suspension bridge under train braking, based on ANSYS software and track-bridge interaction theory, a dynamic analysis model of track-bridge integration of long-span suspension bridge was established. According to the braking force time history of CRH electronic multiple units (EMU), the effects of braking stop position, initial braking speed, train type, vertical force of train and braking force of train on the additional stress of rail and the relative displacement between rail and bridge were studied. The results are drawn as follows. Because the dynamic calculation takes into account the influence of the previous load step on the next load step and the influence of the longitudinal resistance hysteresis characteristics of the line, the calculation results of the dynamic and static are significantly different. The traditional static calculation underestimates the force on the rail under the train load, so it is necessary to calculate the track-bridge interaction of long-span suspension bridges under the train load according to the dynamic method in practical engineering applications. The braking stop position has a significant impact on the additional tensile stress of rail and the relative displacement increment between rail and bridge. The train braking stop at the middle position of the main span is the most unfavorable condition among the four typical working conditions selected to study the track-bridge interaction of long-span suspension bridges. The braking force of train has a significant impact on the additional tensile stress of the rail at the bridge end position and the relative displacement between rail and bridge. The vertical force of train has a significant impact on the distribution of the additional stress of the rail and the longitudinal displacement between rail and bridge within the scope of the main bridge, and shows a strong correlation with the peak value of the additional compressive stress of the rail. CRH,5, and CRH,2, EMU train are unfavorable train types for studying the track-bridge interaction of long-span suspension bridge under the braking of CRH EMUs, and the most unfavorable braking mode of CRH,5, EMU is the maximum conventional braking. Because the initial braking speed does not affect the peak braking force value of train, the track-bridge interaction of long-span suspension bridge is not sensitive to the change of initial braking speed. The research results can provide reference for improving the calculation theory of CWR under train braking.
梁轨相互作用悬索桥动力分析列车制动力时程CRH动车组列车
track-bridge interactionsuspension bridgedynamic analysistime history curve of train braking forceCRH multiple unit train
戴公连, 闫斌. 高速铁路斜拉桥与无缝线路相互作用研究[J]. 土木工程学报, 2013, 46(8): 90-97.
DAI Gonglian, YAN Bin. Interaction between cable-stayed bridge traveled by high-speed trains and continuously welded rail[J]. China Civil Engineering Journal, 2013, 46(8): 90-97.
于向东, 黄铮, 敬海泉. 考虑加载历史多因素耦合作用下的梁轨相互作用附加力[J]. 铁道科学与工程学报, 2023, 20(1): 210-221.
YU Xiangdong, HUANG Zheng, JING Haiquan. Additional force of track-bridge interaction under multi-factor coupling of loading history[J]. Journal of Railway Science and Engineering, 2023, 20(1): 210-221.
刘文硕, 戴公连, 秦红禧. 滑移支座摩阻效应对高速铁路大跨度桥梁梁轨相互作用的影响[J]. 中南大学学报(自然科学版), 2019, 50(3): 627-633.
LIU Wenshuo, DAI Gonglian, QIN Hongxi. Influence of friction effect of sliding bearing on track-bridge interaction between continuous welded rail and long-span bridge in high-speed railway[J]. Journal of Central South University (Science and Technology), 2019, 50(3): 627-633.
颜轶航, 吴定俊, 李奇. 列车制动下铁路斜拉桥梁轨动力相互作用研究[J]. 中国铁道科学, 2019, 40(1): 31-38.
YAN Yihang, WU Dingjun, LI Qi. Dynamic interaction between beam and track of railway cable-stayed bridge under train braking[J]. China Railway Science, 2019, 40(1): 31-38.
朱志辉, 李晓光, 闫铭铭, 等. 基于扣件阻力试验的高速铁路桥上无缝线路纵向力研究[J]. 中南大学学报(自然科学版), 2020, 51(7): 1966-1976.
ZHU Zhihui, LI Xiaoguang, YAN Mingming, et al. Longitudinal force of CWR on high speed railway bridge based on fastener resistance test[J]. Journal of Central South University (Science and Technology), 2020, 51(7): 1966-1976.
方联民, 朱志辉, 闫铭铭, 等. 制动工况下“站桥合一”客站纵向动力研究[J]. 铁道科学与工程学报, 2017, 14(12): 2593-2603.
FANG Lianmin, ZHU Zhihui, YAN Mingming, et al. Longitudinal dynamic response analysis of “building-bridge integration” railway station induced by vehicle braking[J]. Journal of Railway Science and Engineering, 2017, 14(12): 2593-2603.
杲斐, 程选生. 纵连板式轨道脱空对行车安全可靠性的影响分析[J]. 铁道科学与工程学报, 2023, 20(1): 136-144.
GAO Fei, CHENG Xuansheng. Analysis of the influence of longitudinal slab track void on traffic safety and reliability[J]. Journal of Railway Science and Engineering, 2023, 20(1): 136-144.
HE Xuhui, YU Kehui, CAI Chenzhi, et al. Dynamic responses of a metro train-bridge system under train-braking: field measurements and data analysis[J]. Sensors, 2020, 20(3): 735.
ZHANG Ji, WU Dingjun, LI Q, et al. Experimental and numerical investigation of track-bridge interaction for a long-span bridge[J]. Structural Engineering & Mechanics, 2019, 70(6): 723-735.
BOSE T, LEVENBERG E, ZANIA V. Analyzing track responses to train braking[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(7): 1984-1993.
FENG Y L, JIANG L Z, ZHOU W B. Damage destruction evolution law of high-speed railway CRTS II slab ballastless track interface under train braking and temperature load[J]. IOP Conference Series: Earth and Environmental Science, 2018, 189: 062060.
LI Rui, ZHOU Hongli, WU Yueyuan, et al. Human-simulated intelligent control of train braking response of bridge with MRB[C]// SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. Proc SPIE 9799, Active and Passive Smart Structures and Integrated Systems 2016, Las Vegas, Nevada, USA. 2016, 9799: 844-854.
赵卫华, 王平, 曹洋. 大跨度钢桁斜拉桥上无缝线路制动力的计算[J]. 西南交通大学学报, 2012, 47(3): 361-366.
ZHAO Weihua, WANG Ping, CAO Yang. Calculation of braking force of continuous welded rail on large-span steel truss cable-stayed bridge[J]. Journal of Southwest Jiaotong University, 2012, 47(3): 361-366.
LU Long. Vibration response of railway cable-stayed bridges under high-speed train braking loads[J]. E3S Web of Conferences, 2020, 165: 04053.
闫斌, 甘睿, 张高祥, 等. 千米级铁路悬索桥上无缝线路纵向力分布规律研究[J]. 铁道学报, 2021, 43(3): 130-135.
YAN Bin, GAN Rui, ZHANG Gaoxiang, et al. Study on distribution law of longitudinal force on continuously welded rails on kilometer level railway suspension bridge[J]. Journal of the China Railway Society, 2021, 43(3): 130-135.
龚俊虎, 李伟强, 谢海林, 等. 中低速磁浮大位移轨道伸缩装置设计与创新[J]. 铁道科学与工程学报, 2021, 18(1): 235-242.
GONG Junhu, LI Weiqiang, XIE Hailin, et al. Design and innovation of the large displacement track expansion device for medium and low speed maglev transit[J]. Journal of Railway Science and Engineering, 2021, 18(1): 235-242.
李国龙, 高芒芒, 杨飞, 等. 400 km/h高速铁路大跨度桥梁轨道静态长波不平顺验收标准研究[J]. 铁道科学与工程学报, 2023, 20(5): 1902-1916.
LI Guolong, GAO Mangmang, YANG Fei, et al. Acceptance standard for track static geometric long-wave irregularity of long-span railway bridge under 400 km/h[J]. Journal of Railway Science and Engineering, 2023, 20(5): 1902-1916.
谢铠泽, 赵维刚, 蔡小培, 等. 悬索桥初始内力与几何非线性对梁轨相互作用的影响[J]. 交通运输工程学报, 2020, 20(1): 82-91.
XIE Kaize, ZHAO Weigang, CAI Xiaopei, et al. Impacts of initial internal force and geometric nonlinearity of suspension bridge on bridge-rail interaction[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 82-91.
高亮, 张雅楠, 吕宝磊, 等. 千米级以上超大跨径桥上无缝线路梁轨相互作用分析及应用[J]. 北京交通大学学报, 2021, 45(4): 9-18.
GAO Liang, ZHANG Yanan, LYU Baolei, et al. Analysis and application of continuous welded rail’s beam-track interaction on ultra-large span bridges above one kilometer[J]. Journal of Beijing Jiaotong University, 2021, 45(4): 9-18.
中华人民共和国铁道部. 铁路无缝线路设计规范: TB 10015—2012[S]. 北京: 中国铁道出版社, 2013.
Ministry of Railways of the People’s Republic of China. Code for design of railway continuous welded rail: TB 10015—2012[S]. Beijing: China Railway Press, 2013.
张子健, 邓亚伟, 杨清祥, 等. CRH型电动车组制动距离计算与监控装置制动模式曲线设计[J]. 铁道机车车辆, 2007, 27(6): 1-5.
ZHANG Zijian, DENG Yawei, YANG Qingxiang, et al. Computation of braking distance and supervisory device braking mode curve design for CRH electric multiple unit[J]. Railway Locomotive & Car, 2007, 27(6): 1-5.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构