1.中南大学 土木工程学院,湖南 长沙 410075
郭向荣(1968—),男,湖南桃江人,教授,博士,从事桥梁结构动力学研究;E-mail:gxr888@vip.163.com
扫 描 看 全 文
郭向荣,岳道阔.基于列车走行性的斜拉桥竖弯涡振振幅限值研究[J].铁道科学与工程学报,2023,20(11):4233-4242.
GUO Xiangrong,YUE Daokuo.Amplitude limit of cable-stayed bridge vertical bending vortex vibration based on train running performance[J].Journal of Railway Science and Engineering,2023,20(11):4233-4242.
郭向荣,岳道阔.基于列车走行性的斜拉桥竖弯涡振振幅限值研究[J].铁道科学与工程学报,2023,20(11):4233-4242. DOI: 10.19713/j.cnki.43-1423/u.T20222339.
GUO Xiangrong,YUE Daokuo.Amplitude limit of cable-stayed bridge vertical bending vortex vibration based on train running performance[J].Journal of Railway Science and Engineering,2023,20(11):4233-4242. DOI: 10.19713/j.cnki.43-1423/u.T20222339.
为合理确定基于列车运行安全性与乘坐舒适性的斜拉桥竖弯涡激振动幅值限值,以渝黔高铁某主跨为300 m的双塔斜拉桥为工程背景,通过刚性悬挂节段模型测力试验获取其主梁与列车气动三分力系数,采用弹性悬挂节段模型测振试验测试成桥状态下主梁的涡振性能,获取桥梁的竖向涡振起振风速。将桥梁与列车视为一个整体系统,以风荷载为外部激励,以轨道不平顺为自激力,其中桥梁的涡振响应以动态轨道不平顺的形式加入,依据弹性系统动力学总势能不变值原理以及形成矩阵的“对号入座”法则建立风-车-桥耦合系统振动方程,研究桥梁发生不同振幅及初始相位竖向涡振情况下,列车以不同行车速度通过桥梁时的桥梁动力响应指标和列车脱轨系数、轮重减载率、车体振动加速度、Sperling舒适性指标等,确定在考虑列车运行安全性和乘坐舒适性情况下的斜拉桥竖弯涡振振幅限值。研究结果表明:列车运行速度分别为250,275,300,325和350 km/h时,该斜拉桥竖弯涡振振幅限值分别为3.5,3.0,2.5,2.3和1.8 cm。基于列车走行性计算确定的桥梁竖弯涡振振幅限值较《公路桥梁抗风设计规范》中对桥梁竖弯涡振振幅限值的规定更具参考价值,较基于车体加速度峰值及其变化率确定的桥梁竖弯涡振振幅限值更加合理。
In order to determine the amplitude thresholds of cable-stayed bridge vertical vortex-induced vibration(VVIV) based on train operation safety and riding comfort, taking a twin tower cable-stayed bridge with 300 m main span in Chongqing-Guizhou high-speed railway as the engineering background, the three component coefficients of the main beam and the train were obtained by the force measurement test of the rigid suspension segment model. The vortex vibration performance of the main beam under the bridge completion state was tested by the vibration measurement tests of the elastic suspension segment model to obtain the starting wind speed of VVIV. The bridge and train were regarded as a whole system, with wind load as external excitation and track irregularity as self-excited force. The VIV response of the bridge was added in the form of dynamic track irregularity. The vibration equation of wind-vehicle-bridge coupling system was formulated by means of the principle of total potential energy with a stationary value in elastic system dynamics and the “set-in-right-position” rule. The dynamic response index of the bridge, train derailment coefficient, wheel unloading rate, vehicle vibration acceleration and Sperling comfort index were calculated and analyzed when the train passes through the bridge at different speeds under different amplitudes and initial phases of VVIV. The amplitude thresholds of VVIV considering train operation safety and riding comfort was finally determined. The results show that when the train speeds are 250, 275, 300, 325 and 350 km/h, the vortex vibration amplitude limits of the vertical bending of the bridge are 3.5, 3.0, 2.5, 2.3 and 1.8 cm. The amplitude thresholds of cable-stayed bridge VVIV determined based on the calculation of train running performance is more valuable than it in the Code for Design of Highway Bridge Wind Resistance, and is more reasonable than it determined based on the train peak acceleration and its time-varying rate.
桥梁工程斜拉桥涡振振幅限值风-车-桥耦合振动风洞试验列车走行性
bridge engineeringcable-stayed bridgeamplitude thresholds of vortex-induced vibrationwind-train-bridge coupled vibrationwind-tunnel testtrain running performance
葛耀君, 赵林, 许坤. 大跨桥梁主梁涡激振动研究进展与思考[J]. 中国公路学报, 2019, 32(10): 1-18.
GE Yaojun, ZHAO Lin, XU Kun. Review and reflection on vortex-induced vibration of main girders of long-span bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 1-18.
LARSEN A. Aerodynamic aspects of the final design of the 1624 m suspension bridge across the Great Belt[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48(2/3): 261-285.
BURDEN A R. Japanese cable-stayed bridge design[J]. Proceedings of the Institution of Civil Engineers, 1991, 90(5): 1021-1051.
LI Hui, LAIMA Shujin, OU Jinping , et al. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements[J]. Engineering Structures, 2011, 33(6): 1894-1907.
GE Yaojun, ZHAO Lin, CAO Jinxin. Case study of vortex-induced vibration and mitigation mechanism for a long-span suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220: 104866.
交通运输部. 公路桥梁抗风设计规范: JTG/T 3360-01—2018[S]. 北京: 人民交通出版社, 2018.
Ministry of Transport of the People’s Republic of China. Wind-resistant design specification for highway bridges: JTG/T 3360-01—2018[S]. Beijing: China Communications Press, 2018.
陈政清, 黄智文. 大跨度桥梁竖弯涡振限值的主要影响因素分析[J]. 中国公路学报, 2015, 28(9): 30-37.
CHEN Zhengqing, HUANG Zhiwen. Analysis of main factors influencing allowable magnitude of vertical vortex-induced vibration of long-span bridges[J]. China Journal of Highway and Transport, 2015, 28(9): 30-37.
陈尚烽. 考虑行车安全性的桥梁竖向涡振限值计算[J]. 中外公路, 2019, 39(6): 114-117.
CHEN Shangfeng. Calculation of vertical vortex vibration limit of bridge considering driving safety[J]. Journal of China & Foreign Highway, 2019, 39(6): 114-117.
赵会东, 陈良江, 肖海珠, 等. 高速铁路大跨度桥梁涡激振动振幅限值研究[J]. 桥梁建设, 2022, 52(1): 49-55.
ZHAO Huidong, CHEN Liangjiang, XIAO Haizhu, et al. Study on vortex-induced vibration amplitude thresholds of high-speed railway long-span bridge[J]. Bridge Construction, 2022, 52(1): 49-55.
廖海黎, 李明水, 马存明, 等. 桥梁风工程2019年度研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(5): 56-66.
LIAO Haili, LI Mingshui, MA Cunming, et al. State-of-the-art review of bridge wind engineering in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 56-66.
XIA H, GUO W W, ZHANG N, et al. Dynamic analysis of a train-bridge system under wind action[J]. Computers & Structures, 2008, 86(19/20): 1845-1855.
何旭辉, 谭凌飞, 敬海泉, 等. 金海特大桥主桥抗风性能试验研究[J]. 铁道科学与工程学报, 2021, 18(8): 2081-2088.
HE Xuhui, TAN Lingfei, JING Haiquan, et al. Experimental study on wind resistance of main bridge of Jinhai Bridge[J]. Journal of Railway Science and Engineering, 2021, 18(8): 2081-2088.
HE Wei, GUO Xiangrong, ZHU Zhihui, et al. Effects of wind barriers on running safety of trains for urban rail cable-stayed bridge[J]. Wind and Structures, 2020, 31: 43.
郭向荣, 刘江浩, 吴业飞, 等. “站桥合一”高架车站动力响应影响参数研究[J]. 铁道科学与工程学报, 2023, 20(2): 671-681.
GUO Xiangrong, LIU Jianghao, WU Yefei, et al. Research on the influencing parameters of the dynamic responses of the elevated station with “integral station-bridge system”[J]. Journal of Railway Science and Engineering, 2023, 20(2): 671-681.
周智辉, 文颖, 曾庆元. 结构动力学讲义[M]. 2版. 北京: 人民交通出版社, 2017.
ZHOU Zhihui, WEN Ying, ZENG Qingyuan. Lectures on dynamics of structures[M]. 2nd ed. Beijing: China Communications Press, 2017.
DEODATIS G. Simulation of ergodic multivariate stochastic processes[J]. Journal of Engineering Mechanics, 1996, 122(8): 778-787.
曾庆元. 弹性系统动力学总势能不变值原理[J]. 华中理工大学学报, 2000, 28(1): 1-3.
ZENG Qingyuan. The principle of total potential energy with stationary value in elastic system dynamics[J]. Journal of Huazhong University of Science and Technology, 2000, 28(1): 1-3.
曾庆元, 杨平. 形成矩阵的“对号入座”法则与桁梁空间分析的桁段有限元法[J]. 铁道学报, 1986, 8(2): 48-59.
ZENG Qingyuan, YANG Ping. The “set-in-right-position” rule for forming structural matrices and the finite truss element method for space analysis of truss bridges[J]. Journal of the China Railway Society, 1986, 8(2): 48-59.
何玮, 郭向荣, 朱志辉. 侧风对大跨度城轨斜拉桥车-桥耦合振动的影响及其对策研究[J]. 应用力学学报, 2021, 38(3): 958-964.
HE Wei, GUO Xiangrong, ZHU Zhihui. Effect of crosswind on coupling vibrations of train-bridge system for URRT cable-stayed bridge and its countermeasures[J]. Chinese Journal of Applied Mechanics, 2021, 38(3): 958-964.
国家铁路局. 铁路桥涵设计规范: TB 10002—2017[S]. 北京: 中国铁道出版社, 2017.
National Railway Administration of the People’s Republic of China. Code for design on railway bridge and culvert: TB 10002—2017[S]. Beijing: China Railway Press, 2017.
国家铁路局. 高速铁路设计规范: TB 10621—2014[S]. 北京: 中国铁道出版社, 2014.
National Railway Administration of the People’s Republic of China. Code for design of high speed railway: TB 10621—2014[S]. Beijing: China Railway Press, 2014.
国家铁路局. 铁路线路设计规范: TB 10098—2017 [S]. 北京: 中国铁道出版社, 2017.
National Railway Administration of the People’s Republic of China. Code for design of railway line: TB 10098—2017[S]. Beijing: China Railway Press, 2017.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构