1.中南大学 土木工程学院,湖南 长沙 410075
2.高速铁路建造技术国家工程研究中心,湖南 长沙 410075
刘文硕(1985—),女,河南商丘人,副教授,博士,从事高速铁路大跨度桥梁研究;E-mail:liuwenshuo@csu.edu.cn
扫 描 看 全 文
刘文硕,吕方舟,戴公连等.高速铁路大跨度斜拉桥钢箱梁温度模式分析[J].铁道科学与工程学报,2023,20(11):4031-4040.
LIU Wenshuo,LÜ Fangzhou,DAI Gonglian,et al.Temperature mode of steel box girder of long span cable-stayed bridge of high-speed railway[J].Journal of Railway Science and Engineering,2023,20(11):4031-4040.
刘文硕,吕方舟,戴公连等.高速铁路大跨度斜拉桥钢箱梁温度模式分析[J].铁道科学与工程学报,2023,20(11):4031-4040. DOI: 10.19713/j.cnki.43-1423/u.T20222305.
LIU Wenshuo,LÜ Fangzhou,DAI Gonglian,et al.Temperature mode of steel box girder of long span cable-stayed bridge of high-speed railway[J].Journal of Railway Science and Engineering,2023,20(11):4031-4040. DOI: 10.19713/j.cnki.43-1423/u.T20222305.
为探究高速铁路大跨度斜拉桥钢箱梁温度场的时间和空间分布规律,基于商合杭高铁裕溪河大桥长期现场实测温度数据,通过时间序列分析、傅立叶曲线拟合等方法,针对高速铁路斜拉桥钢箱梁的温度荷载模式开展研究。通过时间序列加法模型,将钢箱梁的温度时程分解为长期趋势、年温度作用、不规则变动和日照作用,并拆分钢箱梁温度为日均匀温度和波动温度,分别得到二者的时程曲线。此外,通过傅立叶曲线拟合获得钢箱梁的日均匀温度和四季波动温度拟合公式,探究钢箱梁日均匀温度和波动温度的变化规律,并通过正负温差分析,用指数函数拟合得到钢箱梁四季的梯度温度作用模式。研究结果表明,钢箱梁日均匀温度和波动温度均可以用傅立叶曲线进行较高精度的拟合;四季中钢箱梁波动温度幅值最大的为夏季,其次为春季和秋季,冬季的波动温度幅值最小;钢箱梁合拢温度应接近结构日均匀温度区间的中位值,钢箱梁在春秋季合拢最为理想,在夏冬季的最佳合拢时间分别为凌晨5点和下午17点;钢箱梁竖向最大温差出现在夏季;四季正温差均在14点左右达到最大值,夜晚负温差基本保持恒定;构建的钢箱梁正负温差模式相比各国规范能更好地包络实测温度数据。研究结果可为高速铁路大跨度斜拉桥钢箱梁的温度时变研究和钢箱梁温度分布模式提供参考。
To explore the temporal and spatial distribution of temperature field of steel box girder in high-speed railway (HSR) long-span cable-stayed bridges, the long-term in-situ measured temperature data of Yuxihe Bridge on Shangqiu-Hefei-Hangzhou HSR was used to study the temperature load model of HSR steel box girder cable-stayed bridge using time series analysis, Fourier curve fitting and other methods. Through the time series addition model, the temperature time history of steel box girder was decomposed into long-term trend, annual temperature effect, irregular variation and sunshine effect. The temperature of steel box girder was divided into two temperature forms: daily uniform temperature and fluctuating temperature. The time history curves of the two were obtained respectively. In addition, the fitting formula of daily uniform temperature and four-season fluctuation temperature of steel box girder was obtained by Fourier curve fitting. The variation rule of daily uniform temperature and fluctuation temperature was explored. The gradient temperature action mode of steel box girder in four seasons was obtained by using exponential function fitting through the analysis of positive and negative temperature difference. The results show that the daily uniform temperature and fluctuating temperature of steel box girder can be fitted with the Fourier curve with high precision. Among the four seasons, the maximum temperature fluctuation amplitude of steel box girder occurs in summer, followed by spring and autumn, and the minimum temperature fluctuation amplitude occurs in winter. The closing temperature of steel box girder should be close to the median value of the daily uniform temperature range of the structure. The closing time of steel box girder is the most appropriate in spring and autumn, and the best closing time in summer and winter is 5:00 pm and 17:00 pm respectively. The maximum vertical temperature difference of steel box girder occurs in summer. The positive temperature difference reaches the maximum at about 14:00 pm in all seasons, and the negative temperature difference at night is basically constant. Compared with national specifications in various countries, the measured temperature data of steel box girder can be better enveloped by the positive and negative temperature difference patterns constructed. The research results could provide a valuable reference for the temperature time-varying study and steel box girder temperature distribution mode of high-speed railway long-span cable-stayed bridges.
高速铁路钢箱梁温度模式时间序列
high-speed railwaysteel box girdertemperature modetime series
TONG M, THAM L G, AU F T K, et al. Numerical modelling for temperature distribution in steel bridges[J]. Computers & Structures, 2001, 79(6): 583-593.
LIU Hongbo, CHEN Zhihua, ZHOU Ting. Theoretical and experimental study on the temperature distribution of H-shaped steel members under solar radiation[J]. Applied Thermal Engineering, 2012, 37: 329-335.
张智晖. 预应力混凝土箱梁时变温度场及其效应研究[D]. 西安: 长安大学, 2010.
ZHANG Zhihui. Study on time-varying temperature field and its effect of prestressed concrete box girder[D]. Xi’an: Chang’an University, 2010.
戴公连, 杨凌皓, 文望青, 等. 中低速磁浮轨道梁温度场时程分析[J]. 西南交通大学学报, 2019, 54(2): 227-234.
DAI Gonglian, YANG Linghao, WEN Wangqing, et al. Time-history analysis of temperature field of medium-low maglev guideway girder[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 227-234.
LUCAS J, VIRLOGEUX M, LOUIS C. Temperature in the box girder of the Normandy bridge[J]. Structural Engineering International, 2005, 15(3): 156-165.
KIM S H, PARK S J, WU Jiaxu, et al. Temperature variation in steel box girders of cable-stayed bridges during construction[J]. Journal of Constructional Steel Research, 2015, 112: 80-92.
杨宁. 无铺装层钢箱梁日照温度场及其效应分析[D]. 长沙: 长沙理工大学, 2009.
YANG Ning. Sunlight temperature field and its effect analysis of steel box girder without pavement[D].Changsha: Changsha University of Science & Technology, 2009.
滕华俊, 祝志文, 李健朋. 基于现场实测的钢桥面钢箱梁竖向温度梯度研究[J]. 铁道科学与工程学报, 2021, 18(12): 3267-3277.
TENG Huajun, ZHU Zhiwen, LI Jianpeng. Investigation on vertical temperature gradient of steel box girder with steel deck under solar radiation[J]. Journal of Railway Science and engineering, 2021, 18(12): 3267-3277.
BROCKWELL P J, DAVIS R A. Time series: theory and methods[M]. 2nd ed. New York: Springer-Verlag, 1991.
卢理. 时间序列加法模型的分解预测研究[D]. 成都: 西南交通大学, 2007.
LU Li. Research on decomposition prediction of time series addition model[D]. Chengdu: Southwest Jiaotong University, 2007.
梁金宝. 高铁箱梁-无砟轨道系统温度作用模型研究[D]. 长沙: 中南大学, 2018.
LIANG Jinbao. Study on temperature interaction model of high-speed railway box girder-ballastless track system[D]. Changsha: Central South University, 2018.
杨凌皓. 磁浮箱梁温度场及其变形研究[D]. 长沙: 中南大学, 2018.
YANG Linghao. Study on temperature field and deformation of maglev box girder[D]. Changsha: Central South University, 2018.
LU Hailin, HAO Jing, ZHONG Jiwei, et al. Analysis of sunshine temperature field of steel box girder based on monitoring data[J]. Advances in Civil Engineering, 2020, 2020(1): 1-10.
MIAO Changqing, SHI Changhua. Temperature gradient and its effect on flat steel box girder of long-span suspension bridge[J]. Science China Technological Sciences, 2013, 56(8): 1929-1939.
EUROCODE. Actions on structures-part 1-5: general actions-thermal actions: BS EN 1991-1-5[S]. BSI, 1991.
American Association of State Highway and Transportation Officials.Specifications ABD[S].London:American Association of State Highway and Transportation Officials, 2012.
SYDNEY S A. Bridge design-design loads:As 5100.2-2017[S]. Sydney, 2017.
国家铁路局. 铁路桥涵设计规范: TB 10002—2017[S]. 北京: 中国铁道出版社, 2017.
National Railway Administration of the People’s Republic of China. Code for design of railway bridges and culverts: TB 10002—2017[S]. Beijing: China Railway Press, 2017.
国家铁路局. 铁路桥涵混凝土结构设计规范: TB 10092—2017[S]. 北京: 中国铁道出版社, 2017.
National Railway Administration of the People’s Republic of China. Code for design of concrete structure of railway bridges and culverts: TB 10092—2017[S]. Beijing: China Railway Press, 2017.
国家铁路局. 高速铁路设计规范: TB 10621—2014[S]. 北京: 中国铁道出版社, 2014.
National Railway Administration of the People’s Republic of China. Code for design of high-speed Railways: TB 10621—2014[S] . Beijing: China Railway Press, 2014.
中华人民共和国交通运输部. 公路桥涵设计通用规范: JTG D60—2015[S] . 北京: 人民交通出版社, 2015.
Ministry of Transport of the People’s Republic of China. General code for design of highway bridges and culverts:JTG D60―2015[S]. Beijing: People’s Communications Press, 2015.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构