1.河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210024
2.重庆大学 土木工程学院,重庆 400045
3.中国建筑股份有限公司,北京 100029
孔纲强(1982—),男,浙江磐安人,教授,博士,从事能源地下结构与工程方面的教学与科研工作;E-mail:gqkong1@163.com
扫 描 看 全 文
王天赐,孔纲强,刘汉龙等.高海拔地区桩基混凝土硬化时期热力响应特性现场试验[J].铁道科学与工程学报,2023,20(11):4140-4150.
WANG Tianci,KONG Gangqiang,LIU Hanlong,et al.Field tests on thermal response of pile foundation concrete in high altitude localities during hardening period[J].Journal of Railway Science and Engineering,2023,20(11):4140-4150.
王天赐,孔纲强,刘汉龙等.高海拔地区桩基混凝土硬化时期热力响应特性现场试验[J].铁道科学与工程学报,2023,20(11):4140-4150. DOI: 10.19713/j.cnki.43-1423/u.T20222284.
WANG Tianci,KONG Gangqiang,LIU Hanlong,et al.Field tests on thermal response of pile foundation concrete in high altitude localities during hardening period[J].Journal of Railway Science and Engineering,2023,20(11):4140-4150. DOI: 10.19713/j.cnki.43-1423/u.T20222284.
高原地区高海拔、大温差和低气压的特殊环境,会导致早龄期混凝土水化热问题区别于其他地区。目前,针对减小高原地区早龄期混凝土水化热温差、加快高原地区混凝土水化热消散机理尚不清楚。通过在桩基混凝土结构中埋设换热管,建立循环换热系统,开展高原地区桥梁桩基早龄期混凝土水化热消散现场试验。实测桩基混凝土的水化热温度和热致应变变化,获得埋管式循环系统对桩身水化热温度场和应力场的规律,并初步探讨与其他地区的差异性。研究结果表明:本文试验条件下,通过水泵、循环水管、水箱等设备组成的埋管式循环系统可以用于加快高原地区早龄期混凝土的水化热消散以及减小高原地区早龄期混凝土温差;与桩-土之间的热传导相比,埋管式循环系统能够加速混凝土的水化热消散进程,通过循环管中的换热介质将水化作用的热量传递到地面外部环境中,可降低水化热的峰值温度约2~4 ℃,相应龄期提前约37~58 h;埋管式循环系统能够明显降低桩底部的应变变化范围,能够减小桩基早龄期混凝土的桩身应力,桩身最大约束应力(0.7倍桩长处)降低约23.6%;埋管式循环系统还能够降低混凝土水化进程中的第二零应力温度,提高早龄期混凝土的温降裂缝能力。研究结果对高原地区桩基早龄期混凝土的水化热进程控制和抗裂性能分析有一定的参考价值。
The plateau area's special climate of high altitude, huge temperature changes, and low pressure will cause a different hydration and heat problem in early-age concrete than in other regions. At present, the mechanism of temperature difference of hydration heat of early age concrete in plateau area and accelerating the dissipation of hydration heat of concrete in plateau area is still unclear. Field tests of the heat dissipation of hydrated early-age concrete bridge pile foundations in the plateau area were carried out by embedding heat exchange tubes in pile concrete structures and establishing a circulating heat exchange system. The temperature and strain of pile concrete hydration heat were measured. The rule of temperature and stress field of hydration heat of pile body induced by a buried pipe circulation system was obtained, along with a preliminary discussion of differences with other areas. The results show that under the experimental conditions, the buried pipe circulation system consisting of water pump, circulating water pipe, water tank and other equipment can be used to accelerate the dissipation of hydration heat of early age concrete and reduce the temperature difference of early age concrete in plateau area. Compared with the heat diffusion between piles and soils, the buried pipe circulation system can accelerate the dissipation process of hydration heat of concrete. Through the heat exchange medium in the circulation pipe, the heat of hydration is transferred to the external environment of the ground. The peak temperature of hydration heat is reduced by about 2~4 ℃, and the corresponding age is advanced by about 37~58 h. The buried pipe circulation system can obviously reduce the strain variation range at the bottom of pile, reduce the pile stress at early age of concrete, and reduce the maximum constraint stress (0.7 times pile strength) by 23.6%. The buried pipe circulation system can reduce the second zero stress temperature in the hydration process of concrete and improve the temperature-reducing cracking ability of early-age concrete. The research results can provide some reference value for the control of hydration heat process and the analysis of crack resistance of early age concrete of pile foundation in plateau area.
高原地区高寒地区水化热桩基现场试验
plateauhigh cold regionheat of hydrationpile foundationfield test
周大为, 邓年春, 石拓. 川藏铁路低温灌注钢管混凝土拱肋水化试验研究[J]. 铁道标准设计, 2020, 64(12): 52-58.
ZHOU Dawei, DENG Nianchun, SHI Tuo. Experimental study on hydration of CFST arch rib under low temperature in Sichuan-Tibet railway[J]. Railway Standard Design, 2020, 64(12): 52-58.
于连山, 谢清泉, 刘维正, 等. 轨道交通车站主体结构混凝土开裂分析与控制措施[J]. 铁道科学与工程学报, 2019, 16(10): 2562-2571.
YU Lianshan, XIE Qingquan, LIU Weizheng, et al. Analysis and control measures on concrete cracking of main engineering structure of rail transportation station[J]. Journal of Railway Science and Engineering, 2019, 16(10): 2562-2571.
WANG L, YANG H Q, ZHOU S H, et al. Mechanical properties, long-term hydration heat, shinkage behavior and crack resistance of dam concrete designed with low heat Portland (LHP) cement and fly ash[J]. Construction and Building Materials, 2018, 187(30): 1073-1091.
田轩, 邹通, 娄勇, 等. 寒旱区不同养生方式的适应条件及其对预制箱梁混凝土强度的影响[J]. 公路, 2020, 65(6): 36-41.
TIAN Xuan, ZOU Tong, LOU Yong, et al. Adaptability conditions of different curing methods in cold and arid areas and their influence on concrete strength of precast box girder[J]. Highway, 2020, 65(6): 36-41.
刘德慧. 大温差环境下不同养护方式对混凝土桥墩早期开裂的影响[J]. 混凝土与水泥制品, 2018(7): 83-86.
LIU Dehui. The effects of different curing methods on early cracking of concrete piers under large temperature difference[J]. China Concrete and Cement Products, 2018(7): 83-86.
何锐, 王铜, 陈华鑫, 等. 青藏高原气候环境对混凝土强度和抗渗性的影响[J]. 中国公路学报, 2020, 33(7): 29-41.
HE Rui, WANG Tong, CHEN Huaxin, et al. Impact of Qinghai-Tibet Plateau's Climate on strength and permeability of concrete[J]. China Journal of Highway and Transport, 2020, 33(7): 29-41.
SHI Tao, SHENG Xingwang, ZHENG Weiqiet al. Vertical temperature gradients of concrete box girder caused by solar radiation in Sichuan-Tibet railway [J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2022, 23(5): 375-388.
方金城, 孔纲强, 陈斌, 等. 混凝土水化作用对群桩热力学特性影响现场试验[J]. 岩土力学, 2019, 40(8): 2997-3003.
FANG Jincheng, KONG Gangqiang, CHEN Bin, et al. Field test on thermo-mechanical properties of pile group influenced by concrete hydration[J]. Rock and Soil Mechanics, 2019, 40(8): 2997-3003.
魏明畅, 孟永东, 朱超, 等. 回填土钻孔灌注桩-承台混凝土水化作用效应现场试验[J]. 防灾减灾工程学报, 2019, 39(4): 622-627.
WEI Mingchang, MENG Yongdong, ZHU Chao, et al. Field test on concrete hydration effect of bored pile in backfill soil[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4): 622-627.
贺云, 贺金龙, 余棚, 等. 索塔承台大体积混凝土温度控制研究[J]. 铁道科学与工程学报, 2020, 17(2): 372-378
HE Yun, HE Jinlong, YU Peng,et al. Study on temperature control of mass concrete for tower pile cap[J]. Journal of Railway Science and Engineering, 2020, 17(2): 372-378
胡昌斌, 孙增华, 王丽娟. 水泥混凝土路面早龄期应力行为试验研究[J]. 工程力学, 2021, 38(6): 163-174.
HU Changbin, SUN Zenghua, WANG Lijuan. Experimental study on the early-age stress behavior of cement concrete pavement[J]. Engineering Mechanics, 2021, 38(6): 163-174.
赵文斌, 刘建勋, 张戎令, 等. 大温差、干寒地区日照对混凝土箱梁的影响规律[J]. 长江科学院院报, 2018, 35(1): 137-142.
ZHAO Wenbin, LIU Jianxun, ZHANG Rongling, et al. Effect of sunlight on concrete box girder in arid and cold region with large temperature difference[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(1): 137-142.
AL-SALEH S A, AL-ZAID R Z. Effects of drying conditions, admixtures and specimen size on shrinkage strains[J]. Cement and Concrete Research, 2006, 36(10): 1985-1991.
EMBORG M, BERNANDER S. Assessment of risk of thermal cracking in hardening concrete[J]. Journal of Structural Engineering, 1994, 120(10): 2893-2912.
KIM S, GOPALAKRISHNAN K, CEYLAN H, et al. Early-age response of concrete pavements to temperature and moisture variations[J]. The Baltic Journal of Road and Bridge Engineering, 2010, 5(3):132-138.
贾晓云, 朱永全, 李文江. 高原冻土区桩基施工温度场研究[J]. 岩土力学, 2004, 25(7): 1139-1142.
JIA Xiaoyun, ZHU Yongquan, LI Wenjiang. Study of ground temperature field during pile foundation construction in permafrost regions[J]. Rock and Soil Mechanics, 2004, 25(7): 1139-1142.
谭文鹏, 王荣兴, 赵伟, 等. 基于温差控制的大体积混凝土智能温控系统及方法[J]. 公路, 2020, 65(10): 211-215.
TAN Wenpeng, WANG Rongxing, ZHAO Wei, et al. Intelligent temperature control system and method for mass concrete based on temperature difference control[J]. Highway, 2020, 65(10): 211-215.
YANG Jian, HU Yu, ZUO Zheng, et al. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes[J]. Applied Thermal Engineering, 2012, 35(3): 145-156.
KIM J K, KIM K H, YANG J K. Thermal analysis of hydration heat in concrete structures with pipe-cooling system[J]. Computers and Structures, 2001, 79(2): 163-171.
侯炜, 宋一凡, 马超. 基于管冷系统的大体积混凝土水化热时变温度效应[J]. 长安大学学报(自然科学版), 2021, 41(4): 65-77.
HOU Wei, SONG Yifan, MA Chao. Time varying temperature effect of hydration heat of mass concrete based on pipe cooling system[J]. Journal of Chang’an University (Natural Science Edition), 2021, 41(4): 65-77.
FAIZAL M, MORADSHAHI A, BOUAZZA A, et al. Soil thermal response to temperature cycles and end boundary conditions of energy piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(5): 04022027.
李飞, 覃维祖. 混凝土早期约束应力发展及应力松弛[J]. 清华大学学报(自然科学版), 2010, 50(3): 363-366.
LI Fei, QIN Weizu. Restraint stress and stress relaxation in concrete at early ages[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(3): 363-366.
中华人民共和国住房和城乡建设部. 大体积混凝土施工标准: GB 50496—2018[S]. 北京: 中国建筑工业出版社, 2018.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for construction of mass concrete: GB 50496—2018[S]. Beijing: China Architecture and Building Press, 2018.
白银, 李洁, 丁建彤, 等. 同强度等级下粉煤灰掺量对抗冲磨混凝土性能的影响[J]. 水电能源科学, 2022, 40(4): 166-169.
BAI Yin, LI Jie, DING Jiantong, et al. Influence of fly ash content on comprehensive properties of abrasion resistant concrete under the same strength grade[J]. Water Resources and Power, 2022, 40(4): 166-169.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构