1.中南大学 地球科学与信息物理学院,湖南 长沙 410012
2.湖南五维地质科技有限公司,湖南 长沙 410025
王鹤(1978—),女,湖南华容人,副教授,博士,从事电磁法勘探数据处理与正反演研究;E-mail:wanghecsu@csu.edu.cn
扫 描 看 全 文
郭涛,席振铢,王鹤等.基于1 Hz~100 kHz天然电磁场深埋长隧道勘察[J].铁道科学与工程学报,2023,20(11):4107-4116.
GUO Tao,XI Zhenzhu,WANG He,et al.Detection of deeply buried long tunnel with 1 Hz~100 kHz magnetotelluric method[J].Journal of Railway Science and Engineering,2023,20(11):4107-4116.
郭涛,席振铢,王鹤等.基于1 Hz~100 kHz天然电磁场深埋长隧道勘察[J].铁道科学与工程学报,2023,20(11):4107-4116. DOI: 10.19713/j.cnki.43-1423/u.T20222282.
GUO Tao,XI Zhenzhu,WANG He,et al.Detection of deeply buried long tunnel with 1 Hz~100 kHz magnetotelluric method[J].Journal of Railway Science and Engineering,2023,20(11):4107-4116. DOI: 10.19713/j.cnki.43-1423/u.T20222282.
随着深埋长大隧道洞身埋深的增加,目前常用的10~8 192 Hz频带音频大地电磁法满足不了隧道勘察中浅层高分辨率探测和深部数千米深度探测的需求。为了提高浅层分辨率和深埋洞身探测能力,将频率范围扩展至1 Hz~100 kHz进行研究。首先建立复杂地形深埋长大隧道与不良地质体的电性模型结构,利用非结构化网格剖分有限元二维正演计算频率1 Hz~100 kHz宽频天然电磁场的电阻率和相位响应。研究结果显示:TM极化模式对地形、断层及浅部异常体的横向分辨力更强,但受静态效应影响导致纵向分辨率较差;TE极化模式横向分辨力较TM极化模式稍差但不受静态效应影响拥有较高纵向分辨能力,理论上论证1 Hz~100 kHz的频带范围可满足0~2 000 m范围内复杂地形深埋长隧道探测需求。随后,基于MPMT-18系统,一次性完整采集了重庆市武隆区高速公路谭家隧道1 Hz~100 kHz的天然场电磁信号,计算了电阻率和相位响应并反演了谭家隧道的电性结构得到电阻率剖面图,以不同岩性电性特征为物性依据进行综合解释:精细划分了地表第四系覆盖层的厚度,推断了土石界面;分辨了洞身二叠系下统的灰岩、泥岩以及志留系页岩不同岩性围岩,为隧道施工提供了依据;根据电阻率特征在灰岩、泥灰岩地层中划分出3个异常区,经SZK02和SD 33钻孔揭示异常区存在3~4 m大小的岩溶,验证了资料解释的可靠性。
As the buried depth of long tunnel increases, the conventional AMT method covering 10~8 192 Hz band cannot meet the demand for shallow high-resolution detection and deep detection of thousands of meters. To improve the shallow resolution and the detection capability of deep-buried tunnels, the conventional measurement frequency band was intended to be extended to 1 Hz~100 kHz. Firstly, two geoelectric models of deep-buried long tunnels with complex terrain and bad geological bodies at different depths were established. The corresponding apparent resistivity and phase responses were calculated using finite element forwarding method with unstructured grid. The results show that the MT in TM polarization mode has a higher lateral resolution for the terrain, fault and shallow anomaly, but behaves moderately worse in vertical resolution due to the static effect. The AMT in TE polarization mode has a slightly worse lateral resolution, but behaves better in vertical resolution free from the static effect. It is theoretically demonstrated that the proposed AMT of 1 Hz~100 kHz band can meet the detection demand for deep-buried long tunnels within the depth of 0~2 000 m with complex terrain. Then, a MT survey is conducted on the Tanjia tunnel in Wulong District, Chongqing. The measurement collection of 1 Hz~100 kHz band is implemented using MPMT-18 system. The resistivity distribution profile of the tunnel is obtained by inverting the apparent resistivity and phase derived from the MT measurements. Based on the inversion results and the geoelectric properties of different lithologies, this work accurately delineates the thickness of the Quaternary overburden on the surface and infers the soil-rock interface, and distinguishes the different lithologies of the Permian Lower Permian tuffs, mudstones and Silurian shales in the vicinity of the cave, which provides a basis for the tunnel construction. Three anomalous zones are delineated in the tuff and marl strata, and the boreholes SZK02 and SD33 confirm a karst of about 3~4 m size in the delineated anomalous zones, which demonstrates the feasibility and the effectiveness of the proposed MT of 1 Hz~100 kHz band using MPMT-18 system.
宽频大地电磁法TE与TM极化深埋长隧道非结构化网格剖分隧道勘察
broadband magnetotelluric methodTE and TM polarizationdeeply buried long tunnelsunstructured mesh profilingtunnel surveys
罗浚, 徐剑波, 陈建平. 隧道综合超前地质预报技术应用研究[J]. 铁道科学与工程学报, 2017, 14(4): 811-818.
LUO Jun, XU Jianbo, CHEN Jianping. Application and research of comprehensive advanced geological prediction technology in tunnel[J]. Journal of Railway Science and Engineering, 2017, 14(4): 811-818.
赵虎, 章丹贵. 非线性共轭梯度反演法在铁路特长隧道勘查中的应用[J]. 铁道科学与工程学报, 2020, 17(5): 1121-1128.
ZHAO Hu, ZHANG Dangui. Application of NLGC inversion method in exploration of extra long railway tunnels[J]. Journal of Railway Science and Engineering, 2020, 17(5): 1121-1128.
周智辉, 凌同华, 杨志刚, 等. 地质雷达信号定量识别用小波基选取的正演及模型试验研究[J]. 铁道科学与工程学报, 2021, 18(6): 1529-1536.
ZHOU Zhihui, LING Tonghua, YANG Zhigang, et al. Research on forwarding and model experiment of wavelet basis selection for quantitative identification of GPR signals[J]. Journal of Railway Science and Engineering, 2021, 18(6): 1529-1536.
臧万军, 贾晨浩, 王峥峥. 含空洞地层隧道动力响应解析解[J]. 铁道科学与工程学报, 2022, 19(6): 1696-1704.
ZANG Wanjun, JIA Chenhao, WANG Zhengzheng. Analytic solution of dynamic response of tunneling with cavitation[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1696-1704.
中华人民共和国铁道部. 铁路工程物理勘探规范: TB 10013—2010[S]. 北京: 中国铁道出版社, 2010.
Ministry of Railways of the People's Republic of China. Code for geophysical prospecting of railway engineering: TB 10013—2010[S]. Beijing: China Railway Press, 2010.
席振铢, 张宪润, 吴智圣, 等. 雪峰山隧道深部电磁法探测专题报告[R]. 长沙: 中南大学, 2001: 1-12.
XI Zhenzhu, ZHANG Xianrun, WU Zhisheng, et al. Xue Feng Shan Tunnel deep electromagnetic method exploration special report[R]. Changsha: Central South University, 2001: 1-12.
RYANG W H, SHON H. High-frequency magnetotelluric data of tidal deposits: Gomso Bay, southwest coast of Korea[J]. Geosciences Journal, 2003, 7(4): 293-298.
曹哲明, 席振铢, 张宪润, 等. 宜万铁路复杂的长大岩溶隧道物探方法研究[R]. 长沙: 中南大学, 2004: 40-50.
CAO Zhemin, XI Zhenzhu, ZHANG Xianrun, et al. Research on physical exploration methods for complex long karst tunnels of Yichang-Wanzhou Railway[R]. Changsha: Central South University, 2004: 40-50.
汤井田, 王烨, 席振铢, 等. 天然场与人工场源电磁测深法在溶洞探测中的应用研究[C]// 当代矿山地质地球物理新进展.长沙: 中南大学出版社, 2004: 234-238.
TANG Jingtian, WANG Ye, XI Zhenzhu, et al. Study on the application of electromagnetic sounding method of natural field and artificial field source in karst cave exploration[C]// New Progress in Contemporary Mine Geology and Geophysics. Changsha: Central South University Press, 2004: 234-238.
李鹏博, 李铮, 李海. 高频大地电磁法在铁路隧道勘察中的应用[J]. 工程地球物理学报, 2019, 16(5): 713-717.
LI Pengbo, LI Zheng, LI Hai. Application of high frequency magnetotelluric method to railway tunnel exploration[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5): 713-717.
闫永帅, 霍继炜, 高宇甲, 等. 基于高频大地电磁法的优势渗流通道识别研究[J]. 华北水利水电大学学报(自然科学版), 2022, 43(4): 76-82.
YAN Yongshuai, HUO Jiwei, GAO Yujia, et al. Research on the identification of dominant seepage channels based on high frequency electromagnetic method[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 2022, 43(4): 76-82.
HUANG J, MA C, SUN Y. 2D Magnetotelluric forward modelling for deep buried water-rich fault and its application[J]. Journal of Applied Geophysics, 2021, 192: 104403.
王烨. 基于矢量有限元的高频大地电磁法三维数值模拟[D]. 长沙: 中南大学, 2008.
WANG Ye. Three-dimensional numerical simulation of high frequency magnetotelluric method based on vector finite element method[D]. Changsha: Central South University, 2008.
ZHANG L, RUAN B Y, JING R Z, et al. Research of high-frequency magnetotelluric sounding in mineral resources exploration in northern Guangxi, China[C]// Advanced Materials Research. Trans Tech Publications Ltd, 2010, 113: 347-350.
化希瑞, 席振铢, 胡双贵, 等. 高频大地电磁噪声压制[J]. 物探与化探, 2017, 41(2): 328-332.
HUA Xirui, XI Zhenzhu, HU Shuanggui, et al. Noise suppression of high frequency magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2017, 41(2): 328-332.
LIU W, WANG H, XI Z, et al. Physics-driven deep learning inversion with application to magnetotelluric[J]. Remote Sensing, 2022, 14(13): 3218.
薛军平, 龙霞, 席振铢, 等. 实测1~100 kHz大地电磁场分析[J]. 地球物理学进展, 2014, 29(6): 2566-2571.
XUE Junping, LONG Xia, XI Zhenzhu, et al. Measured magnetotelluric field in 1~100 kHz frequency band[J]. Progress in Geophysics, 2014, 29(6): 2566-2571.
杜政, 陈兴朋, 席振铢, 等. 基于噪声水平的感应式磁传感器最优化设计[J]. 黄金, 2022, 43(5): 56-62.
DU Zheng, CHEN Xingpeng, XI Zhenzhu, et al. Optimal design of inductive magnetic sensors based on noise level[J]. Gold, 2022, 43(5): 56-62.
COGGON J H. Electromagnetic and electrical modeling by the finite element method[J]. Geophysics, 1971, 36(1): 132-155.
徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994
XU Shizhe. Finite element method in geophysics[M]. Beijing: Science Press, 1994.
SHEWCHUK J R. Delaunay refinement algorithms for triangular mesh generation[J]. Computational Geometry, 2002, 22(1-3): 21-74.
KEY K, WEISS C. Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example[J]. Geophysics, 2006, 71(6): G291-G299.
FRANKE A, BÖRNER R U, SPITZER K. Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography[J]. Geophysical Journal International, 2007, 171(1): 71-86.
BÖRNER R U. Numerical modelling in geo-electromagnetics: Advances and challenges[J]. Surveys in Geophysics, 2010, 31(2): 225-245.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构