1.郑州大学 水利与土木工程学院,河南 郑州 450001
2.河南省陆浑水库管理局,河南 洛阳 471032
3.重大基础设施检测修复技术国家地方联合工程实验室,河南 郑州 450001
陈灿(1992—),男,河南郑州人,博士研究生,从事劈裂注浆理论研究;E-mail:chenc10002@163.com
扫 描 看 全 文
李晓龙,陈灿,贾赫扬等.考虑化学反应的聚氨酯高聚物浆液膨胀机理试验与数值模拟研究[J].铁道科学与工程学报,2023,20(11):4163-4173.
LI Xiaolong,CHEN Can,JIA Heyang,et al.Expansion mechanism of polymer considering chemical reactions: Experiment and numerical simulation[J].Journal of Railway Science and Engineering,2023,20(11):4163-4173.
李晓龙,陈灿,贾赫扬等.考虑化学反应的聚氨酯高聚物浆液膨胀机理试验与数值模拟研究[J].铁道科学与工程学报,2023,20(11):4163-4173. DOI: 10.19713/j.cnki.43-1423/u.T20222272.
LI Xiaolong,CHEN Can,JIA Heyang,et al.Expansion mechanism of polymer considering chemical reactions: Experiment and numerical simulation[J].Journal of Railway Science and Engineering,2023,20(11):4163-4173. DOI: 10.19713/j.cnki.43-1423/u.T20222272.
目前,高聚物浆液膨胀力计算多采用高聚物密度-最终膨胀力经验关系表达式近似确定,不能反映高聚物反应过程中膨胀力的时程变化,制约计算分析的准确性。针对上述问题,基于浆液聚合反应机理,采用龙格库塔方法求解浆液化学反应动力学方程,并结合理想气体状态方程,构建一种能够描述不同约束条件下高聚物密度、膨胀力随时间变化规律的计算模型。进行了固定浆液体积条件下高聚物膨胀力试验和固定围压条件下高聚物密度测试,数值模拟结果与实测值吻合良好,证明了计算模型的适用性。在此基础上分析不同浆液密度和围压下高聚物浆液膨胀机理,结果表明:固定体积条件下,高聚物浆液膨胀力随时间逐渐增大,其增长速度先慢后快,于32~33 s达到峰值,随后逐渐降低,约90 s时趋于0;浆液膨胀力及其时程变化速率、单位密度变化引起的膨胀力变化量均与浆液密度呈正相关。固定围压条件下,高聚物浆液密度随时间逐渐减小,变化速度初始较快,随后逐渐减缓并趋近于0;围压越大,浆液密度越大,其时程变化速率越低,单位围压变化引起的密度改变量越小。利用该模型可实时求解高聚物浆液膨胀力随时间变化过程,为深入研究不同条件下高聚物膨胀扩散机理、浆液-地层相互作用机制奠定基础。
Currently, most of the polymer grout expansion pressure calculations are determined approximately by the polymer density-final expansion pressure empirical relationship expression. The approach fails to meet the time history of the expansion pressure during the polymer reaction process, which restricts the accuracy of the calculation and analysis. In response to the problem, a calculation model which can describe the variation of polymer density and expansion pressure with time under different conditions was established. The model based on the energy conservation principle, used the Runge-Kutta method to solve the chemical reaction kinetic equation. And it combined the ideal gas state equation. The experiments for polymer expansion pressure under fixed grout volume condition and polymer density under fixed surrounding pressure condition were carried out. The numerical simulation results agree well with the measured values, which can prove the applicability of the proposed expansion pressure calculation model. On this basis, the effects of grout density and surrounding pressure on expansion behavior are investigated. The results are drawn as follows. Under fixed volume conditions, the polymer expansion pressure increases with time, and the change rate of polymer expansion pressure is fast before slow, reaches a peak at 32~33 s, then slows down and converged to zero at about 90s. The grout expansion pressure and its growth rate increase as the density increases, while the expansion pressure change caused by the density change per unit increases as well. Under the fixed surrounding pressure condition, the polymer grout density gradually decreases with time The change rate is fast before slow and gradually converged to zero. The grout density decreases as the surrounding pressure increases, while the grout density change rate decreases. The larger the surrounding pressure, the smaller the grout density change caused by the change of unit surrounding pressure. The model can resolve the variation process of polymer grout expansion pressure with time, which lays the foundation for further study on the polymer expansion and diffusion mechanism and the grout-ground interaction mechanism under different conditions.
高聚物浆液膨胀力化学反应试验计算模型
polymerexpansion pressurechemical reactionexperimentssimulation model
董敏琪, 苏谦, 黄志超, 等. 双块式无砟轨道机械抬升方案设计及注浆加固效果研究[J]. 铁道科学与工程学报, 2022, 19(2): 319-326.
DONG Minqi, SU Qian, HUANG Zhichao, et al. Research on mechanical lifting scheme design of double block ballastless track and grouting reinforcement effect[J]. Journal of Railway Science and Engineering, 2022, 19(2): 319-326.
陈醉, 杨荣山, 汪杰. CRTS I型板式轨道快速注浆抬升方案研究[J]. 铁道科学与工程学报, 2018, 15(12): 3037-3043.
CHEN Zui, YANG Rongshan, WANG Jie. Rapid lifting plans of grouting for CRTS I slab track[J]. Journal of Railway Science and Engineering, 2018, 15(12): 3037-3043.
郭云飞. 机场水泥混凝土道面脱空注浆修复评价研究[D]. 郑州: 郑州大学, 2021.
GUO Yunfei. Research on evaluation of void grouting repair for airport cement concrete pavement[D]. Zhengzhou: Zhengzhou University, 2021.
王复明, 钟燕辉, 张蓓, 等. 半刚性基层路面病害检测与高聚物注浆快速维修技术: CN101261264A[P]. 2008-09-10.
WANG Fuming, ZHONG Yanhui, ZHANG Bei, et al. Semi-rigid base layer disease detection and high polymer grouting rapid servicing technology: CN101261264A[P]. 2008-09-10.
王复明, 李嘉, 石明生, 等. 堤坝防渗加固新技术研究与应用[J]. 水力发电学报, 2016, 35(12): 1-11.
WANG Fuming, LI Jia, SHI Mingsheng, et al. New seepage-proof and reinforcing technologies for dikes and dams and their applications[J]. Journal of Hydroelectric Engineering, 2016, 35(12): 1-11.
王复明, 范永丰, 郭成超. 非水反应类高聚物注浆渗漏水处治工程实践[J]. 水力发电学报, 2018, 37(10): 1-11.
WANG Fuming, FAN Yongfeng, GUO Chengchao. Practice of non-water-reacting polymer grouting treatment to seepage[J]. Journal of Hydroelectric Engineering, 2018, 37(10): 1-11.
李立新, 童无欺, 邹金锋. 注浆抬升位移的随机介质理论预测方法[J]. 铁道科学与工程学报, 2013, 10(5): 47-51.
LI Lixin, TONG Wuqi, ZOU Jinfeng. Study on grouting uplift displacement prediction using stochastic medium theory[J]. Journal of Railway Science and Engineering, 2013, 10(5): 47-51.
李小丰. 多层土压密注浆抬升时上抬力计算分析[J]. 铁道科学与工程学报, 2020, 17(4): 931-939.
LI Xiaofeng. Calculation and analysis of uplifting force in multi-layer soil compaction grouting[J]. Journal of Railway Science and Engineering, 2020, 17(4): 931-939.
李晓龙, 金笛, 王复明, 等. 一种理想自膨胀浆液单裂隙扩散模型[J]. 岩石力学与工程学报, 2018, 37(5): 1207-1217.
LI Xiaolong, JIN Di, WANG Fuming, et al. Diffusion model of an ideal expansible grout in single fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1207-1217.
李晓龙, 王复明, 钟燕辉, 等. 自膨胀高聚物注浆材料在二维裂隙中流动扩散仿真方法研究[J]. 岩石力学与工程学报, 2015, 34(6): 1188-1197.
LI Xiaolong, WANG Fuming, ZHONG Yanhui, et al. Simulation on flowing and diffusing of expansible grouting material of polymer in two-dimensional fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1188-1197.
STEVEN S. Injected polyurethane slab jacking (Interim Report SPR 306-261)[R]. Oregon Department of Transportation Research Group and Federal Highway Administration, 2000.
URETEK, Padua University IMAGE Department. Technical notes and laboratory test results on the latest generation of the Uretek Geoplus expanding resin[R]. URETEK & Padua University IMAGE Department, 2004.
石明生. 高聚物注浆材料特性与堤坝定向劈裂注浆机理研究[D]. 大连: 大连理工大学, 2011.
SHI Mingsheng. Research on the polymer grouting material properties and directional fracturing grouting mechanism for dykes and dams[D]. Dalian: Dalian University of Technology, 2011.
潘艳辉. 型钢: 高聚物复合装配式可回收基坑支护结构体系研究[D]. 郑州: 郑州大学, 2019.
PAN Yanhui. Study on steel-polymer composite assembled recoverable foundation pit supporting structure system[D].Zhengzhou: Zhengzhou University, 2019.
ZHENG Xinguo, LIU Yaxun, ZHANG Jinyong, et al. Effect of cellular structure on mechanical properties of polyurethane foam curing materials[J]. Journal of Wuhan University of Technology (Materials Science), 2019, 34(6): 1371-1375.
郑新国. 反压成型高聚物注浆材料膨胀特性及其固结体力学性能研究[J]. 中国铁道科学, 2017, 38(1): 9-15.
ZHENG Xinguo. Expansion characteristics of polymer grouting material cured under pressure and mechanical properties of its consolidated body[J]. China Railway Science, 2017, 38(1): 9-15.
VALENTINO R, ROMEO E, STEVANONI D. An experimental study on the mechanical behaviour of two polyurethane resins used for geotechnical applications[J]. Mechanics of Materials, 2014, 71: 101-113.
李晓龙, 王复明, 钟燕辉, 等. 同位网格有限体积法在变密度浆液流场计算中的应用[J]. 上海交通大学学报, 2015, 49(7): 946-950.
LI Xiaolong, WANG Fuming, ZHONG Yanhui, et al. Application of FVM with collocated grid in flow field calculation of variable density grout[J]. Journal of Shanghai Jiao Tong University, 2015, 49(7): 946-950.
李晓龙, 张甜甜, 王复明, 等. Youngs方法在自膨胀浆液移动界面追踪中的应用[J]. 岩土力学, 2017, 38(12): 3491-3497.
LI Xiaolong, ZHANG Tiantian, WANG Fuming, et al. Application of Youngs method in tracking the moving interface of expansible grout[J]. Rock and Soil Mechanics, 2017, 38(12): 3491-3497.
LI Xiaolong, HAO Meimei, ZHONG Yanhui, et al. A quasi-3D numerical model for grout injection in a parallel fracture based on finite volume method[J]. Complexity, 2019, 2019: 1-18.
SEO D, YOUN J R. Numerical analysis on reaction injection molding of polyurethane foam by using a finite volume method[J]. Polymer, 2005, 46(17): 6482-6493.
GEIER S, WINKLER C, PIESCHE M. Numerical simulation of mold filling processes with polyurethane foams[J]. Chemical Engineering & Technology, 2009, 32(9): 1438-1447.
BASER S A, KHAKHAR D V. Modeling of the dynamics of water and R-11 blown polyurethane foam formation[J]. Polymer Engineering & Science, 1994, 34(8): 642-649.
LIPSHITZ S D, MACOSKO C W. Kinetics and energetics of a fast polyurethane cure[J]. Journal of Applied Polymer Science, 1977, 21(8): 2029-2039.
KARIMI M, MARCHISIO D L. A baseline model for the simulation of polyurethane foams via the population balance equation[J]. Macromolecular Theory and Simulations, 2015, 24(4): 291-300.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构