1.中南大学 土木工程学院,湖南 长沙 410075
2.中国铁道科学研究院集团有限公司 铁道建筑研究所,北京 100081
刘赞群(1975—),男,湖南双峰人,教授,博士,从事水泥基材料研究;E-mail:zanqun.liu@csu.edu.cn
扫 描 看 全 文
康佳敏,刘赞群,朱嘉慧等.混凝土搅拌站洗浊液碳化处理效应分析[J].铁道科学与工程学报,2023,20(11):4185-4194.
KANG Jiamin,LIU Zanqun,ZHU Jiahui,et al.Analysis on carbonation effect of washing liquid of concrete mixing plant[J].Journal of Railway Science and Engineering,2023,20(11):4185-4194.
康佳敏,刘赞群,朱嘉慧等.混凝土搅拌站洗浊液碳化处理效应分析[J].铁道科学与工程学报,2023,20(11):4185-4194. DOI: 10.19713/j.cnki.43-1423/u.T20222270.
KANG Jiamin,LIU Zanqun,ZHU Jiahui,et al.Analysis on carbonation effect of washing liquid of concrete mixing plant[J].Journal of Railway Science and Engineering,2023,20(11):4185-4194. DOI: 10.19713/j.cnki.43-1423/u.T20222270.
混凝土是世界上用量最大的工程材料,其主要原材料水泥生产排放大量CO,2,,但混凝土又能固化大量CO,2,。本文提出CO,2,碳化混凝土搅拌站洗浊液,其目的是一方面可进一步提高混凝土的碳汇能力,另一方面可以科学解决搅拌站洗浊液的回收利用,避免对环境的污染和水资源浪费。为此,研究分别从市政和铁路建设2个搅拌站选取的40组洗浊液样品,自制碳化装置,评价了洗浊液的固碳效应;并通过XRD,TG,SEM和溶液ICP等微观分析手段,研究了洗浊液碳化后固液相组成的变化规律,碳化洗浊液对水泥净浆工作性能和力学性能的影响。研究发现:洗浊液固碳量与其固含量成正比,不受其存放时间的影响,40组洗浊液样品平均固碳量为其固含量的0.58%。洗浊液碳化后,高碱度的洗浊液pH值降至6.3±0.2,洗浊液液相中的Ca浓度显著降低,Si,S,Mg含量显著提高;固相中的硅酸三钙、羟钙石和钙矾石基本消失,沉淀生成大量颗粒粒径小于30 μm的碳酸钙颗粒。将碳化洗浊液以固含量等量取代水泥后发现:对比未碳化洗浊液和自来水拌制浆体,碳化洗浊液拌制的水泥净浆流动度损失消失,水泥净浆干燥收缩降低,水泥净浆抗压强度增大。因此,本文提出的碳化处理洗浊液技术,既可以成为一种有效的固碳手段,碳化后的洗浊液可以直接应用于混凝土生产,解决其回收利用的难题。
Concrete is the largest engineering material in the world. Its main raw material cement production emits a large amount of CO,2, but concrete can solidify a large amount of CO,2,. This paper puts forward the carbonation of concrete mixing station washing liquid by CO,2, which aims to further improve the carbon sequestration capacity of concrete on the one hand, and scientifically solve the recovery and utilization of the washing liquid in the mixing station on the other hand, so as to avoid environmental pollution and waste of water resources. For this reason, 40 groups of turbid washing liquid samples were selected from municipal and railway construction mixing stations were studied. The carbon sequestration effect of turbid washing liquid was evaluated by self-made carbonization device, and the change law of solid-liquid phase composition after carbonation was studied by means of XRD, TG, SEM and solution ICP. The effect of carbonation washing liquid on the working and mechanical properties of cement paste was studied. It is found that the solid carbon content of the washing liquid is proportional to its solid content, and is not affected by its storage time. The average carbon fixation amount of 40 groups of washing liquid samples is 0.58% of its solid content. After carbonation, the pH value of the washing liquid with high alkalinity decreases to 6.3±0.2, when the concentration of Ca in the liquid phase decreases significantly.The contents of Si, S and Mg increase significantly, and the tricalcium silicate, hydroxyettringite and ettringite in the solid phase basically disappear. A large number of calcium carbonate particles with particle size less than 30 μm are precipitated. After replacing cement with the same amount of solid content, it is found that the fluidity loss of cement paste mixed with uncarbonized solution and tap water disappears, the drying shrinkage of cement paste decreases, and the compressive strength of cement paste increases. Therefore, the carbonization treatment technology proposed in this paper can become an effective means of carbon sequestration, and the carbonized washing liquid can be directly applied to the production of concrete to solve the problem of recycling.
混凝土洗浊液固碳能力工作性能抗压强度固废处理
concrete turbidity washing liquidcarbon sequestrationworking performancecompressive strengthsolid waste treatment
靳惠怡, 韩玥. 《水泥行业碳减排技术指南》《平板玻璃行业碳减排技术指南》通过验收[J]. 中国建材, 2022, 71(10): 64-65.
JIN Huiyi, HAN Yue. Technical guide for carbon emission reduction in cement industry and technical guide for carbon emission reduction in flat glass industry passed the acceptance[J]. China Building Materials, 2022, 71(10): 64-65.
BODEN T, MARLAND G, ANDRES R. Global, regional, and national fossil-fuel CO2 emissions, 1751—2007(version 2010)[M]. Carbon Dioxide Information Analysis Center, 2010.
XI Fengming, DAVIS S J, CIAIS P, et al. Substantial global carbon uptake by cement carbonation[J]. Nature Geoscience, 2016, 9(12): 880-883.
JANG J G, KIM G M, KIM H J, et al. Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials[J]. Construction and Building Materials, 2016, 127: 762-773.
CHATVEERA B, LERTWATTANARUK P, MAKUL N. Effect of sludge water from ready-mixed concrete plant on properties and durability of concrete[J]. Cement and Concrete Composites, 2006, 28(5): 441-450.
ASADOLLAHFARDI G, TAHMASABI G, NABI S M, et al. Effects of using concrete wash water on a few characteristics of new concrete[J]. Environmental Engineering and Management Journal, 2017, 16(7): 1569-1575.
中国建筑业协会混凝土分会. 2018年我国部分省、市、自治区预拌混凝土产量统计表[J]. 混凝土, 2019(4): 160.
Concrete Branch of China Construction Industry Association. Statistics of ready-mixed concrete output in some provinces, municipalities and autonomous regions of China in 2018[J]. Concrete, 2019(4): 160.
VAIČIUKYNIENĖ D, KANTAUTAS A, TUČKUTĖ S, et al. The using of concrete wash water from ready mixed concrete plants in cement systems[J]. Materials, 2021, 14(10): 2483.
四川省市场监督管理局. 预拌混凝土搅拌站废水废浆回收利用技术规程: DB51/T 2681—2020[S]. 成都: 四川省市场监督管理局, 2020.
Sichuan Provincial Market Supervision and Administration Bureau. Technical specification for recovery and utilization of waste water and pulp from ready-mixed concrete mixing plant: DB51/T2681—2020[S]. Chengdu: Sichuan Provincial Market Supervision and Administration Bureau, 2020.
KALIYAVARADHAN S K, LING T C, MO K H. CO2 sequestration of fresh concrete slurry waste: Optimization of CO2 uptake and feasible use as a potential cement binder[J]. Journal of CO2 Utilization, 2020, 42: 101330.
吴曦, 龚英, 徐士鸣, 等. LiX(X=Cl,Br,I)在乙醇、异丙醇及三氟乙醇中的电导率实验研究[J]. 高校化学工程学报, 2019, 33(3): 533-539.
WU Xi, GONG Ying, XU Shiming, et al. Experimental study on conductivity of LiX(X=Cl,Br,I) in ethanol, isopropanol and 2, 2, 2-trifluoroethanol[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(3): 533-539.
MONKMAN S, JANKE T, HANMORE A. NRG COSIA Carbon XPRIZE: carbon-dioxide mineralization in recycled concrete wash water[J]. Clean Energy, 2021, 5(4): 553-574.
MONKMAN S, MACDONALD M, SUTTER L. Beneficiation of concrete wash water with carbon dioxide[J]. Materials and Structures, 2021, 54(2): 64.
周小强. 搅拌站高浓度废水的回收利用研究[D]. 广州: 广州大学, 2018.
ZHOU Xiaoqiang. Study on the recycling and utilization of high concentration wastewater from mixing plant[D]. Guangzhou: Guangzhou University, 2018.
詹培敏, 孙斌祥, 何智海, 等. 纳米碳酸钙对水泥基材料性能影响的研究进展[J]. 硅酸盐通报, 2018, 37(3): 881-887.
ZHAN Peimin, SUN Binxiang, HE Zhihai, et al. Research progress of effect of nano-calcium carbonate on the properties of cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3): 881-887.
刘新, 冯攀, 沈叙言, 等. 水泥水化产物: 水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
LIU Xin, FENG Pan, SHEN Xuyan, et al. Advances in the understanding of cement hydrate—calcium silicate hydrate (C-S-H)[J]. Materials Reports, 2021, 35(9): 9157-9167.
马昆林, 韩晓昆, 龙广成, 等. 高温低湿下砂浆力学性能及微结构的变化[J]. 铁道科学与工程学报, 2021, 18(2): 392-401.
MA Kunlin, HAN Xiaokun, LONG Guangcheng, et al. Mechanical properties and microstructure of mortar under the hot-dry environment[J]. Journal of Railway Science and Engineering, 2021, 18(2): 392-401.
陆大勇. 混凝土搅拌站废水处理工艺及再生利用技术研究[D]. 绵阳: 西南科技大学, 2020.
LU Dayong. Study on wastewater treatment technology and recycling of concrete mixing station[D]. Mianyang: Southwest University of Science and Technology, 2020.
冯恺雯, 马昆林, 龙广成, 等. 石灰石粉对水泥浆体经时流变性能的影响[J]. 铁道科学与工程学报, 2022, 19(4): 966-975.
FENG Kaiwen, MA Kunlin, LONG Guangcheng, et al. Effects of limestone powder on time-dependent rheological properties of cement paste[J]. Journal of Railway Science and Engineering, 2022, 19(4): 966-975.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构