1.中南大学 土木工程学院,湖南 长沙 410075
2.中南大学 交通运输工程学院,湖南 长沙 410075
3.中南大学 重载铁路工程结构教育部重点实验室,湖南 长沙 410075
4.中铁十七局集团 第一工程有限公司,山西 太原 030006
5.中铁二院工程集团有限公司,四川 成都 610000
6.长沙房产(集团)有限公司,湖南 长沙 410011
武朝光(1973—),男,山西平遥人,高级工程师,从事隧道与地下工程科研工作;E-mail:1780619221@qq.com
扫 描 看 全 文
范涛镛,张学民,武朝光等.机制砂混凝土隧道衬砌结构裂损机理研究[J].铁道科学与工程学报,2023,20(11):4288-4298.
FAN Taoyong,ZHANG Xuemin,WU Chaoguang,et al.Crack mechanism of machine-made sand concrete tunnel lining[J].Journal of Railway Science and Engineering,2023,20(11):4288-4298.
范涛镛,张学民,武朝光等.机制砂混凝土隧道衬砌结构裂损机理研究[J].铁道科学与工程学报,2023,20(11):4288-4298. DOI: 10.19713/j.cnki.43-1423/u.T20222261.
FAN Taoyong,ZHANG Xuemin,WU Chaoguang,et al.Crack mechanism of machine-made sand concrete tunnel lining[J].Journal of Railway Science and Engineering,2023,20(11):4288-4298. DOI: 10.19713/j.cnki.43-1423/u.T20222261.
为明确铁路隧道机制砂混凝土衬砌结构边墙环向开裂原因,开展了模筑混凝土短柱承载特性试验,利用基于损伤力学的有限元方法,结合模筑混凝土收缩形变试验,分析了机制砂混凝土的收缩变形特征和偏心短柱的承载特性。借助DIANA10.4程序进一步建立机制砂混凝土隧道衬砌结构的三维数值仿真模型,综合考虑围岩荷载、机制砂混凝土收缩效应以及隧道衬砌结构整体受力状态,探讨了机制砂混凝土隧道衬砌结构裂损机理。研究结果表明:随着混凝土强度等级的提高,机制砂混凝土构件与河砂混凝土构件承载能力与抗裂能力均逐步增强,但延性呈逐渐下降趋势;在模筑混凝土短柱承载特性试验中,混凝土强度等级较低构件(C20、C25、C30)破坏特征呈延性,混凝土强度等级较高构件(C35、C40)破坏特征呈脆性;混凝土强度等级相同的情况下,机制砂混凝土构件抗裂与承载能力较河砂混凝土构件虽有所提高,但由收缩效应产生的收缩应力较大,易导致结构裂损;收缩效应是导致机制砂混凝土隧道衬砌结构边墙处出现环向裂缝的主要原因;在保证结构安全的条件下,应适当减小混凝土强度等级、加强养护,降低机制砂混凝土收缩率,以减少衬砌结构裂损现象的出现。研究结果为解决机制砂混凝土隧道衬砌环向开裂问题提供了参考。
To clarify the causes of circumferential cracking in the side walls of the mechanism sand concrete lining structure of railroad tunnels, a load bearing characteristics test of short columns of molded concrete was conducted. Using the finite element method based on damage mechanics and combined with the shrinkage deformation test of molded concrete, the shrinkage deformation characteristics of the machine-made sand concrete and the load-bearing characteristics of the eccentric short column were analyzed. With the help of DIANA10.4 program, the three-dimensional numerical simulation model of the mechanism sand concrete tunnel lining structure was established. The cracking mechanism of the mechanism sand concrete tunnel lining structure was discussed by considering the surrounding rock load, the shrinkage effect of mechanism sand concrete and the overall stress state of the tunnel lining structure. The results show that with the increase of concrete strength grade, the load-bearing capacity and crack resistance of machine-made sand concrete members and river sand concrete members are gradually enhanced, but the ductility shows a gradual decrease trend. In the test of bearing characteristics of molded concrete short columns, the damage characteristics of concrete members with lower strength grades (C20, C25, C30) are ductile, and the damage characteristics of concrete members with higher strength grades (C35, C40) are brittle. In the case of the same concrete strength grade, the cracking resistance and load-bearing capacity of the mechanism sand concrete members are improved compared with the river sand concrete members, but the shrinkage stress generated by the shrinkage effect is larger, which can easily lead to structural cracking. The shrinkage effect is the main cause of circumferential cracks at the side walls of the mechanism sand concrete tunnel lining structure. Under the condition of ensuring the structural safety, the concrete strength level should be appropriately reduced, maintenance should be strengthened, and the shrinkage rate of the machine-made sand concrete should be reduced to reduce the appearance of the cracking phenomenon of the lining structure. The results of the study can provide a reference for solving the problem of circumferential cracking of mechanism sand concrete tunnel lining.
隧道工程衬砌结构机制砂混凝土收缩开裂力学性能
tunnel engineeringlining structuremachine made sand concreteshrinkage crackingmechanical properties
DILEK U. Effects of manufactured sand characteristics on water demand of mortar and concrete mixtures[J]. Journal of Testing and Evaluation, 2015, 43(3): 20130321.
QUIROGA P N, AHN N, FOWLER D W. Concrete mixtures with high microfines[J]. ACI Materials Journal, 2006, 103(4): 258.
段中剑. 机制砂自密实大体积混凝土桥台温度场及温度应力分析[D]. 北京: 北方工业大学, 2021: 1-93.
DUAN Zhongjian. Temperature field and temperature stress analysis of self-compacting bulk concrete bridge deck with manufactured sand[D]. Beijing: North China University of Technology, 2021: 1-93.
雷乃金, 陈平奥. 隧道机制砂喷射混凝土研究[J]. 铁道科学与工程学报, 2020, 17(9): 2271-2277.
LEI Naijin, CHEN Pingao. Study on the machine-made sand shotcrete of tunnel construction[J]. Journal of Railway Science and Engineering,2020,17(9): 2271-2277.
于本田, 陈延飞, 王焕, 等. 大掺量高吸附性石粉高强机制砂混凝土收缩开裂抑制试验[J]. 复合材料学报, 2021, 38(8): 2737-2746.
YU Bentian, CHEN Yanfei, WANG Huan, et al. Experiment on control measures of shrinkage and cracking of high strength manufactured sand concrete containing a large amount of high absorbency stone powder[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2737-2746.
夏晋, 徐彦帆, 李天, 等. 机制砂钢筋混凝土梁受弯与受剪性能试验研究[J]. 建筑结构学报, 2019, 40(5): 71-79.
XIA Jin, XU Yanfan, LI Tian, et al. Experimental study on flexural and shear behaviors of reinforced concrete beams made with manufactured sands[J]. Journal of Building Structures, 2019, 40(5): 71-79.
赖勇超, 刘敦文, 黄利俊, 等. 凝灰岩机制砂品质对混凝土性能的影响研究[J]. 工业建筑, 2020, 50(5):88-93.
LAI Yongchao, LIU Dunwen, HUANG Lijun, et al. Research on the influence of quality of manufactured tuff sand on concrete performance[J]. Industrial Construction, 2020, 50(5): 88-93.
余海洋. 凝灰岩机制砂水泥混凝土性能研究[D]. 西安: 长安大学, 2021.
YU Haiyang. Study on the performance of cement concrete with tuff manufactured sand[D]. Xi’an: Changan University, 2021.
冷冬, 徐鑫, 夏京亮, 等. 机制砂石粉含量对轨枕混凝土性能影响研究[J]. 新型建筑材料, 2020, 47(12): 1-4.
LENG Dong, XU Xin, XIA Jingliang, et al. Study on the influence of machine-made sand powder content on the performance of sleeper concrete[J]. New Building Materials, 2020, 47(12): 1-4.
TOPÇU İ B, UĞURLU A. Effect of the use of mineral filler on the properties of concrete[J]. Cement and Concrete Research, 2003, 33(7): 1071-1075.
QUIROGA P N, AHN N, FOWLER D W. Concrete mixtures with high microfines[J]. ACI Materials Journal, 2006, 103(4): 258.
EREN Ö, MARAR K. Effects of limestone crusher dust and steel fibers on concrete[J]. Construction and Building Materials, 2009, 23(2): 981-988.
LI Beixing, ZHOU Mingkai, WANG Jiliang. Effect of the methylene blue value of manufactured sand on performances of concrete[J]. Journal of Advanced Concrete Technology, 2011, 9(2): 127-132.
STEWART J G, NORVELL J K, JUENGER M C G, et al. Influence of microfine aggregate characteristics on concrete performance[J]. Journal of Materials in Civil Engineering, 2007, 19(11): 957-964.
傅蕾, 张学民, 王立川, 等. 基于机制砂混凝土收缩试验的隧道衬砌环向开裂原因探讨[J]. 铁道科学与工程学报, 2021, 18(10): 2671-2678.
FU Lei, ZHANG Xuemin, WANG Lichuan,et al. Discussion on circumferential cracking of tunnel lining based on shrinkage test of machine-made sand concrete[J]. Journal of Railway Science and Engineering, 2021, 18(10): 2671-2678.
高祥. 铁路隧道机制砂混凝土衬砌开裂原因及强度等级适宜性研究[D]. 长沙: 中南大学, 2020: 1-100.
GAO Xiang. Study on cracking reasons and strength grade suitability of sand concrete lining of railway tunnel mechanism[D]. Changsha: Central South University, 2020: 1-100.
中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of concrete structures: GB/T 50152—2012[S]. Beijing: China Architecture & Building Press, 2012.
朱长华, 李享涛, 王保江, 等. 大风干旱地区预防混凝土结构开裂的试验研究[J]. 铁道建筑, 2012, 52(2): 123-126.
ZHU Changhua, LI Xiangtao, WANG Baojiang, et al. Experimental study on preventing concrete structure cracking in windy and arid areas[J]. Railway Engineering,2012, 52(2): 123-126.
RICHARDS J A. Inspection, maintenance and repair of tunnels: international lessons and practice[J]. Tunnelling and Underground Space Technology, 1998, 13(4): 369-375.
杨雨冰, 谢雄耀. 基于断裂力学的盾构隧道管片结构开裂破损机制探讨[J]. 岩石力学与工程学报, 2015, 34(10): 2114-2124.
YANG Yubing, XIE Xiongyao. Breaking mechanism of segmented lining in shield tunnel based on fracture mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2114-2124.
MAEKAWA K, TAKEMURA J, IRAWAN P, et al. Continuum fracture in concrete nonlinearity under triaxial confinement[J]. Doboku Gakkai Ronbunshu, 1993, 1993(460): 113-122.
MAEKAWA K, TAKEMURA J, IRAWAN P, et al. Plasticity in concrete nonlinearity under triaxial confinement[J]. Doboku Gakkai Ronbunshu, 1993, 1993(460): 123-130.
MAEKAWA K, TAKEMURA J, IRAWAN P, et al. Triaxial elasto-plastic and fracture model for concrete[J]. Doboku Gakkai Ronbunshu, 1993, 1993(460): 131-138.
李银斌, 阮欣. 机制砂混凝土抗裂性能试验研究[J]. 中外公路, 2013, 33(5): 248-251.
LI Yinbin, RUAN Xin. Experimental study on crack resistance of machine-made sand concrete[J]. Journal of China & Foreign Highway, 2013, 33(5): 248-251.
Comite Euro-International du Beton. CEB-FIP model code 1990: design code[M]. London: Thomas Telford Press, 1993.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构