1.中南大学 土木工程学院,湖南 长沙 410075
2.中南大学 高速铁路建造技术国家工程研究中心,湖南 长沙 410075
孟栋梁(1991—),男,安徽合肥人,博士,从事桥梁抗震研究;E-mail:mengdl@csu.edu.cn
扫 描 看 全 文
杨孟刚,李滨宏,孟栋梁.墩顶水平冲击作用下承插式桥墩动力响应研究[J].铁道科学与工程学报,2023,20(11):4221-4232.
YANG Menggang,LI Binhong,MENG Dongliang.Dynamic response of socket piers under horizontal impact at pier top[J].Journal of Railway Science and Engineering,2023,20(11):4221-4232.
杨孟刚,李滨宏,孟栋梁.墩顶水平冲击作用下承插式桥墩动力响应研究[J].铁道科学与工程学报,2023,20(11):4221-4232. DOI: 10.19713/j.cnki.43-1423/u.T20222218.
YANG Menggang,LI Binhong,MENG Dongliang.Dynamic response of socket piers under horizontal impact at pier top[J].Journal of Railway Science and Engineering,2023,20(11):4221-4232. DOI: 10.19713/j.cnki.43-1423/u.T20222218.
为研究墩顶水平冲击作用下承插式预制桥墩的动力行为,对一承插式构件进行冲击试验。基于ANSYS/LS-DYNA对冲击试验进行有限元模拟,并通过试验结果验证了有限元模型的精确性。在此基础上,通过数值模拟的方法分析冲击作用下承插式桥墩的内力(剪力和弯矩)变化规律和损伤机理,并探讨了冲击质量、冲击速度、承插深度以及接缝强度对桥墩动力响应的影响。结果表明:在初始接触阶段,桥墩的截面剪力和弯矩时程曲线出现明显振荡;相较于墩身顶部,墩身底部截面剪力和弯矩响应峰值出现具有滞后性。在墩顶位移峰值时刻,构件内力分布规律与在静载作用下的结果类似,即剪力沿墩身(不包含桥墩承插部分)呈矩形分布,弯矩近似呈三角形分布;在冲击荷载作用下,承插式桥墩的最大弯矩出现于墩身底部,而最大剪力截面位于桥墩承插段,构件的损伤主要表现为墩身底部的弯曲损伤和承插段的弯剪损伤。随冲击质量和冲击速度的增加,冲击力、构件的剪力、弯矩和塑性变形响应均有所增大;相比冲击质量而言,冲击速度对冲击力峰值的影响更为显著。增加承插深度以及接缝强度可提高构件刚度,从而减小桥墩的水平位移,但会增大构件弯矩响应。研究成果可为承插式桥墩的抗冲击设计提供参考。
To investigate the dynamic behavior of socket precast piers under horizontal impact at pier top, an impact test on a socket specimen was conducted. A finite element model was established using software ANSYS/LS-DYNA and validated by the experimental results. On the basis, the transmission of the internal forces (shear force and bending moment) and damage mechanism of the socket pier under impact load were analyzed. The effects of impact mass, impact velocity, socket depth and joint strength on the dynamic response of the socket pier were discussed. The results indicate that in the initial contact stage, obvious vibration can be found in the time histories of shear force and bending moment of the pier. The maximum internal forces at the socket pier bottom would appear later compared to those at the pier top. When the pier-top displacement reaches the maximum value, the distribution of the internal forces alone the pier (excluding the socket part) due to impact load is very similar to that due to static load, i.e., the shear force and bending moment are distributed in a rectangular shape and a triangular shape along the pier, respectively. Under the impact load, the maximum bending moment appears at the bottom cross-section of the pier (excluding the socket part), while the maximum shear force appears in the socket part. Consequently, damage to the socket pier is manifested as the bending damage at the pier bottom and the bending-shear damage in the socket part. Increasing the impact mass and velocity will lead to a larger impact force and thus a larger shear force, bending moment and plastic deformation of the socket pier. Impact velocity has a more significant effect on the generated maximum impact force than impact mass. Increasing socket depth and joint strength will increase the pier stiffness, resulting in a smaller displacement but a larger bending moment of the socket pier. The research results can provide a reference for the design of socket piers due to impact load.
承插式桥墩墩顶水平冲击作用试验研究有限元模拟动力响应
socket pierhorizontal impact at pier topexperimental researchfinite element simulationdynamic response
晋智斌, 陈科, 陆军. 预制浅承插式高强混凝土空心桥墩抗震性能试验[J]. 中国公路学报, 2022, 35(4): 128-139.
JIN Zhibin, CHEN Ke, LU Jun. Seismic performance of precast hollow high-strength concrete bridge columns with shallow socket connection[J]. China Journal of Highway and Transport, 2022, 35(4): 128-139.
CANHA R M F, EBELING E B, CRESCE EL DEBS A L H, et al. Analysing the base of precast column in socket foundations with smooth interfaces[J]. Materials and Structures, 2009, 42(6): 725-737.
MA Haiying, LAI Minghui, SHI Xuefei, et al. Experimental and numerical study on column-foundation connection through external socket [J]. Journal of Civil Engineering and Management, 2021, 27(3): 162-174.
XU Yan, ZENG Zeng, WANG Zhigang, et al. Experimental studies of embedment length of precast bridge pier with socket connection to pile cap[J]. Engineering Structures, 2021, 233: 111906.
MENG Dongliang, YANG Menggang, YANG Ziqi, et al. Effect of earthquake-induced transverse poundings on a 32 m span railway bridge isolated by friction pendulum bearings[J]. Engineering Structures, 2022, 251: 113538.
MENG Dongliang, LIU Qi, YANG Menggang, et al.Seismic vulnerability of simply-supported bridges considering link-slabs in the continuous deck and pounding[J].Structure and Infrastructure Engineering, 2023, 19(10): 1459-1477.
YANG Menggang, MENG Dongliang, GAO Qiong, et al. Experimental study on transverse pounding reduction of a high-speed railway simply-supported girder bridge using rubber bumpers subjected to earthquake excitations[J]. Engineering Structures, 2019, 196: 109290.
孟栋梁, 杨孟刚, 费凡. 碰撞对高铁简支桥梁横向地震响应影响的振动台试验研究[J]. 工程力学, 2019, 36(8): 161-170.
MENG Dongliang, YANG Menggang, FEI Fan. Shaking table test study on the influence of collision on lateral seismic response of simply supported high-speed rail bridges[J]. Engineering Mechanics, 2019, 36(8): 161-170.
戴公连, 肖尧, 郭向荣, 等. 考虑桥墩撞击的整体式刚构桥列车走行性分析[J]. 铁道科学与工程学报, 2022, 19(7): 1954-1962.
DAI Gonglian, XIAO Yao, GUO Xiangrong, et al. Train runnability analysis of integral rigid frame bridge considering pier collision[J]. Journal of Railway Science and Engineering, 2022, 19(7): 1954-1962.
刘莉萍, 刘万锋, 郭建博, 等. 车撞混凝土桥墩精细化建模方法[J]. 铁道科学与工程学报, 2022, 19(6): 1666-1674.
LIU Liping, LIU Wanfeng, GUO Jianbo, et al. Refined modeling method for impact resistance research of bridge piers[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1666-1674.
岳凯乐, 吉喆, 张世蒙, 等. 考虑桩土作用的桥墩车撞动力响应分析[J]. 铁道科学与工程学报, 2022, 19(1): 161-170.
YUE Kaile, JI Zhe, ZHANG Shimeng, et al. Dynamic responses of bridge pier subjected to vehicle collision considering pile-soil interaction[J]. Journal of Railway Science and Engineering, 2022, 19(1): 161-170.
王银辉, 冯泽牛, 罗征. 车辆撞击下UHPC连接预制拼装桥墩动力响应及耐撞性能优化[J]. 重庆交通大学学报(自然科学版), 2021, 40(10): 73-81.
WANG Yinhui, FENG Zeniu, LUO Zheng. Dynamic response and crashworthiness optimization of prefabricated piers connected by UHPC under vehicle impact[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(10): 73-81.
HAN Yan, LIU Zhihao, WANG Longlong. Test for influence of socket connection structure on dynamic response of prefabricated pier under vehicle collision[J]. KSCE Journal of Civil Engineering, 2022, 26(3): 1188-1202.
GUO Wei, FAN Wei, SHAO Xudong, et al. Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations[J]. Composite Structures, 2018, 185: 307-326.
ZHAO Wuchao, FENG Huida, YE Jihong, et al. Performance of precast concrete bridge piers with grouted sleeve connections against vehicle impact[J]. Structures, 2022, 44: 1874-1885.
孟栋梁. 桥梁结构震致碰撞效应试验研究与理论分析[D]. 长沙: 中南大学, 2022: 92-138.
MENG Dongliang. Experimental study and theoretical analysis of earthquake-induced pounding effects on bridges[D]. Changsha: Central South University, 2022: 92-138.
徐艳, 童自亮, 曾增, 等. 灌浆料对预制拼装承插式桥墩力学性能的影响[J]. 华南理工大学学报(自然科学版), 2021, 49(5): 84-91.
XU Yan, TONG Ziliang, ZENG Zeng, et al. Influence of grout on the mechanical performance of prefabricated assembled socket bridge pier[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(5): 84-91.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构