1.西南交通大学 土木工程学院,四川 成都 610031
2.中国铁路经济规划研究院有限公司,北京 100038
3.中铁二院工程集团有限责任公司,四川 成都 610031
黄俊杰(1984—),男,广西南宁人,副教授,博士,从事铁路和公路路基工程研究;E-mail:jjhuang_swjtu@126.com
扫 描 看 全 文
王鑫越,余雷,褚宇光等.架空式桩板结构路基静动力特性试验研究[J].铁道科学与工程学报,2023,20(11):4128-4139.
WANG Xinyue,YU Lei,CHU Yuguang,et al.Experimental study on static and dynamic characteristics of overhead pile-plate structure subgrade[J].Journal of Railway Science and Engineering,2023,20(11):4128-4139.
王鑫越,余雷,褚宇光等.架空式桩板结构路基静动力特性试验研究[J].铁道科学与工程学报,2023,20(11):4128-4139. DOI: 10.19713/j.cnki.43-1423/u.T20222209.
WANG Xinyue,YU Lei,CHU Yuguang,et al.Experimental study on static and dynamic characteristics of overhead pile-plate structure subgrade[J].Journal of Railway Science and Engineering,2023,20(11):4128-4139. DOI: 10.19713/j.cnki.43-1423/u.T20222209.
针对常规路基在平原地区和岩溶地区建设中面临占地大、合格填料缺乏、地基处理工程量大及费用高等问题,设计一种具有一定脱空高度的架空式桩板结构路基。为了研究架空式桩板结构路基静动力特性,依托贵南高铁某架空式桩板结构路基试验段工程,开展架空式桩板结构路基静动力特性室内模型试验。试验结果表明:竖向静载作用下,结构应力随荷载值增加呈线性增大,结构整体处于线弹性工作阶段,托梁能一定程度减少应力在承载板中的集中分布。水平静载作用下,结构最大变形量出现在断轨力加载工况,为0.159 mm,换算至原尺模型为1.113 mm,变形量较小,架空式桩板结构路基具有较大的纵横向结构刚度。在1~5 Hz变频动载作用下,结构最大动加速度和动位移响应均出现在2号跨加载工况,承载板及托梁最大动加速度分别为10.10 mm/s,2,和4.54 mm/s,2,。结构最大动位移值为0.189 mm,换算至原尺模型为1.323 mm,远小于我国现行高速铁路标准路基竖向动位移控制值3.5 mm。变频动载试验数据显示,架空式桩板结构路基整体未产生异常振动响应现象,反映架空式桩板结构路基在1~5 Hz加载频率范围内不会发生共振。静动力试验结果综合表明,架空式桩板结构路基具有良好的受力与变形协调特性和振动特性。研究成果可为架空式桩板结构路基的推广应用提供支撑。
Aiming at the problems of large land occupation, lack of qualified filler, large amount of foundation treatment works and high cost in the construction of conventional subgrade in plain and karst areas, an overhead pile-plate structure subgrade with a certain void height was designed. In order to study the static and dynamic characteristics of the overhead pile-plate structure subgrade, the indoor model test of the static and dynamic characteristics of the overhead pile-plate structure subgrade was carried out according to the test section project of Guizhou-Nanning high-speed railway. The test results show that under the action of vertical static load, the structure stresses increase linearly with the increase of load value. The whole structure is in the linear elastic working stage. The supporting beam can reduce the concentrated distribution of stress in the bearing plate to a certain extent. Under the action of horizontal static load, the maximum deformation of the structure appears in the loading condition of the rail breaking force, which is 0.159 mm. The maximum deformation converted to the original scale model is 1.113 mm. The deformation of the subgrade structure is small, which reflects that the overhead pile-board structure subgrade has good vertical and horizontal structural stiffness. Under the action of 1~5 Hz variable frequency dynamic load, the maximum dynamic acceleration and displacement response of the structure appears in the quarter-span loading condition. The maximum dynamic acceleration of the bearing plate and the supporting beam is 10.10 m/s,2, and 4.54 m/s,2, respectively. The maximum dynamic displacement of the structure is 0.189 mm. The maximum dynamic displacement of the structure converted to the original scale model is 1.323 mm, which is far less than the control value of 3.5 mm in vertical dynamic displacement of current high-speed railway subgrade standard. Variable frequency dynamic load test data show that the overhead pile-plate structure subgrade does not produce abnormal vibration response. The overhead pile-plate structure subgrade will not resonate in the loading frequency range of 1~5 Hz. The static and dynamic test results show that the overhead pile-plate structure subgrade has good stress and deformation coordination characteristics and vibration characteristics. The results can provide support for the popularization and application of overhead pile-plate structure subgrade.
铁路路基架空式桩板结构路基模型试验静动力特性
railway subgradeoverhead pile-plate structure subgrademodel teststatic and dynamic characteristics
SHAN Yao, ZHOU Xiangliang, CHENG Guohui, et al. In-situ test on impact loads of a five-module 100% low-floor tram and the prediction of damage characteristics of a pile-plank-supported tram track[J]. Construction and Building Materials, 2021, 277: 122320.
王长丹, 陈凯祥, 陕耀, 等. 深厚软土区有轨电车桩板结构路基沉降变形离心模型试验[J]. 岩石力学与工程学报, 2022, 41(S2): 3444-3452.
WANG Changdan, CHEN Kaixiang, SHAN Yao, et al. Centrifugal model test of settlement and deformation of tram pile-plate structure subgrade in deep soft soil area[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2): 3444-3452.
林宇亮, 张震, 罗桂军, 等. 膨胀土边坡的水平膨胀力及桩板结构内力分析[J]. 中南大学学报(自然科学版), 2022, 53(1): 140-149.
LIN Yuliang, ZHANG Zhen, LUO Guijun, et al. Analysis of lateral swelling pressure of expansive soil slope and internal force of pile-sheet structure[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 140-149.
WEI Limin, LI Shuanglong, LIN Yuliang, et al. Dynamic performance of a deep buried pile-plank structure transition section for a high-speed railway-Field tests and numerical analyses[J]. Transportation Geotechnics, 2020, 25.
魏丽敏, 李双龙, 何群, 等. 深埋式桩板结构桥隧过渡段动力特性研究[J]. 铁道学报, 2021, 43(1): 141-148.
WEI Limin, LI Shuanglong, HE Qun, et al. Study on dynamic characteristics of deep-buried pile-slab subgrade in bridge-tunnel transition section[J]. Journal of the China Railway Society, 2021, 43(1): 141-148.
HUANG Junjie, SU Qian, LIU Ting, et al. Vibration and long-term performance analysis of pile-plank-supported low subgrade of ballastless track under excitation loads[J]. Shock and Vibration, 2015(5): 1-12.
中华人民共和国铁道部. 铁路工程地基处理技术规程: TB 10106―2010[S]. 北京: 中国铁道出版社, 2010.
Ministry of Railways of the People's Republic of China. Technical code for ground treatment of railway engineering: TB 10106―2010[S]. Beijing: China Railway Press, 2010.
XIAO Hong, GONG XiaoPing, YANG Song. Static analysis of the interaction among soil, slab and piles in pile-slab structure[J]. Sensors & Transducers, 2013, 154(7): 234-243.
黄骞, 刘凤奎. 客运专线非埋式路基桩板结构温度应力计算方法[J]. 铁道建筑, 2016, 56(10): 83-85.
HUANG Qian, LIU Fengkui. Calculation method of temperature stress in non-embedded pile-slab structure on passenger dedicated railway[J]. Railway Engineering, 2016, 56(10): 83-85.
周珩, 苏谦, 刘杰, 等. 非埋式桩板结构路基水平承载试验研究[J]. 铁道标准设计, 2019, 63(5): 26-30.
ZHOU Heng, SU Qian, LIU Jie, et al. Model testing study on non-embedded pile-plank structure subgrade under horizontal load[J]. Railway Standard Design, 2019, 63(5): 26-30.
罗锟, 汪振国, 雷晓燕. 城市轨道交通连续桩板结构上无缝线路纵向力分析[J]. 铁道科学与工程学报, 2019, 16(11): 2692-2698.
LUO Kun, WANG Zhenguo, LEI Xiaoyan. Longitudinal force analysis of continuously welded rail on continuous pile-board structure in urban rail transit[J]. Journal of Railway Science and Engineering, 2019, 16(11): 2692-2698.
苏谦, 王武斌, 白皓, 等. 非埋式桩板结构路基承载机制[J]. 交通运输工程学报, 2012, 12(1): 19-24.
SU Qian, WANG Wubin, BAI Hao, et al. Bearing capacity mechanism of non-embedded pile-plank structure subgrade[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 19-24.
WANG Xun, SU Qian, XIAO Hong. Field test research of pile-plank structure on Zhengzhou-Xi'an high-speed railway[J]. Advanced Materials Research, 2011, 354-355: 109-113.
SU Qian, LI Xing, BAI Hao. Dynamic response of pile-board subgrade based on large scale model test[J]. Applied Mechanics and Materials, 2011(71/78):383-387
白皓, 苏谦, 黄俊杰, 等. 非埋式桩板路基动力特性原位激振试验研究[J]. 岩土力学, 2012, 33(12): 3753-3759.
BAI Hao, SU Qian, HUANG Junjie, et al. In-situ forced vibration tests on dynamic characteristics of non-embedded pile-board subgrade[J]. Rock and Soil Mechanics, 2012, 33(12): 3753-3759.
谭汉义, 王文龙. 贵南高速铁路深挖方路堑膨胀岩基底加固处理设计探讨[J]. 低碳世界, 2019, 9(6): 225-226.
TAN Hanyi, WANG Wenlong. Discussion on reinforcement design of expansive rock foundation in deep excavation of Guinan high-speed railway[J]. Low Carbon World, 2019, 9(6): 225-226.
黄俊杰, 谢聪, 苏谦, 等.一种膨胀土路堑结构: CN111424481B[P]. 2021-05-25.
HUANG Junjie, XIE Cong, SU Qian, et al. An expansive soil cutting structure: CN111424481B[P]. 2021-05-25.
崔雅莉. 高速铁路高桩板结构力学特性与合理型式研究[D]. 成都: 西南交通大学, 2019.
CUI Yali. Study on mechanical characteristics and reasonable type of high-speed railway pile-slab structure[D]. Chengdu: Southwest Jiaotong University, 2019.
郭明珠, 邹玉, 孙海龙. 振动台模型试验相似理论分析[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(4): 594-601.
GUO Mingzhu, ZOU Yu, SUN Hailong. Analysis of similarity theory of shaking table model test[J]. Journal of Shenyang Jianzhu University (Science and Technology), 2021, 37(4): 593-601.
中华人民共和国国家铁路局. 铁路桥涵设计规范: TB 10002—2017[S]. 中国铁道出版社, 2017.
National Railway Administration of the People's Republic of China. Code for design of railway bridges and culverts: TB 10002-2017[S]. China Railway Press, 2017.
詹永祥. 高速铁路无碴轨道桩板结构路基设计理论及试验研究[D]. 成都: 西南交通大学, 2007.
ZHAN Yongxiang. Design theory and experimental study on pile-sheet structure subgrade of ballastless track of high-speed railway[D]. Chengdu: Southwest Jiaotong University, 2007.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构