1.中车青岛四方机车车辆股份有限公司,山东 青岛 266111
2.中南大学 轨道交通安全教育部重点实验室,湖南 长沙 410075
姚曙光(1970—),女,湖南邵阳人,教授,博士,从事列车撞击动力学研究;E-mail:ysgxzx@csu.edu.cn
扫 描 看 全 文
陈文宾,于洋洋,张鹏等.动车组排雪特性影响因素仿真分析[J].铁道科学与工程学报,2023,20(11):4050-4061.
CHEN Wenbin,YU Yangyang,ZHANG Peng,et al.Influencing factors of snow discharge characteristics of Motor Train Units based on simulation[J].Journal of Railway Science and Engineering,2023,20(11):4050-4061.
陈文宾,于洋洋,张鹏等.动车组排雪特性影响因素仿真分析[J].铁道科学与工程学报,2023,20(11):4050-4061. DOI: 10.19713/j.cnki.43-1423/u.T20222172.
CHEN Wenbin,YU Yangyang,ZHANG Peng,et al.Influencing factors of snow discharge characteristics of Motor Train Units based on simulation[J].Journal of Railway Science and Engineering,2023,20(11):4050-4061. DOI: 10.19713/j.cnki.43-1423/u.T20222172.
探寻运行速度和排障雪犁张角对动车组除雪特性的影响规律,是解决积雪环境下动车组运营效率及运行安全问题的关键举措。采用光滑粒子流体力学(SPH)方法模拟雪堆,构建动车组-雪堆-轨道耦合动力学仿真模型,研究运行速度40,80,120,160和180 km/h和张角60°,90°和120°对雪粒子运动状态和动车组排雪阻抗力、轮重减载率的影响。研究结果表明:积雪沿着雪犁外形向两侧推开,雪粒子运动呈抛物线状,飞雪轨迹均未遮挡司机室视野;排障雪犁张角为,,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=50878763&type=,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=50878761&type=,4.48733330,2.28600001,时,随着动车组运行速度从40 km/h增加到180 km/h,雪粒子距离地面最大垂向高度从1 419 mm增加到4 433 mm;纵向阻抗平台力从18.72 kN增加到260.28 kN,垂向阻抗力平台力从27.96 kN增加到300.64 kN,车辆-雪堆界面纵向和垂向阻抗力与速度呈现二次函数关系;轮轨关系方面,动车组头车一位端转向架2个轮对的轮重减载率分别从0.433和0.368增加到0.700和0.730,当速度超过120 km/h时,轮重减载率超过标准要求0.6;当运行速度为80 km/h时,随着排障雪犁张角从60°增加到120°,雪粒子距离地面最大垂向高度从2 348 mm增加到4 881 mm;纵向阻抗平台力从59.01 kN增加到92.91 kN;垂向阻抗平台力变化不大;张角的改变不影响动车组轮重减载率的变化。研究成果可为解决高寒地区应对暴雪等恶劣天气的动车组除雪运行问题和排障雪犁结构设计提供思路。
Exploring the influence of running speed and snow plow tension angle on the snow removal characteristics of the Motor Train Unit (MTU) is a key measure to solve the problem of operation efficiency and operation safety in snow environment. Smoothed particle hydrodynamics (SPH) method is used to simulate snow drift, and a coupled dynamic simulation model of MTU-snowdrift-track is constructed. The effects of running speeds of 40, 80, 120, 160, 180 km/h and tension angles of 60°, 90°, 120° on the motion state of snow particles, the resistance force of snow removal and the wheel unloading rate were studied. The results of the study show that the snow pushes away to the sides along the snow plow profile, the snow particle movement is parabolic, and none of the flying snow trajectories obscure the cab view. The maximum vertical height of snow particles from the ground increases from 1 419 mm to 4 433 mm as the running speed increases from 40 km/h to 180 km/h when the snow plow tension angle is 60°. The longitudinal resistance platform force increased from 18.72 kN to 260.28 kN, and the vertical resistance platform force increased from 27.96 kN to 300.64 kN. The longitudinal and vertical impedance force of the vehicle-snow interface shows a quadratic function relationship with the velocity. In terms of wheel-rail relationship, the wheel unloading rate of two wheelsets of one-end bogie at the head of MTU increases from 0.433 and 0.368 to 0.700 and 0.730 respectively. When the speed exceeds 120 km/h, the wheel unloading rate exceeds the standard requirement by 0.6. When the running speed is 80 km/h, the maximum vertical height of snow particles from the ground increases from 2 348 mm to 4 881 mm with the increase of the tension angle from 60° to 120°. The longitudinal resistance platform force increased from 59.01 kN to 92.91 kN. The vertical resistance platform force has little change. The change of tension angle does not affect the change of wheel weight reduction rate of MTU. The research results can provide design ideas for solving the problem of snow removal operation of MTU and structural design of snow plow for removing obstacles in severe weather in high cold areas.
排障雪犁结构有限元模拟排雪阻抗力轮重减载率横向水平雪堆
snow plow structurefinite element simulationsnow removal resistance forcewheel unloading ratelaterally level snow drift
彭冬生, 刘富, 王震. 多功能除雪机的设计[J]. 湖北汽车工业学院学报, 2011, 25(2): 78-80.
PENG Dongsheng, LIU Fu, WANG Zhen. Design of multifunctional snow sweeper[J]. Journal of Hubei Automotive Industries Institute, 2011, 25(2): 78-80.
ROBERT N, GRAMBLE II, Watertown snow plow rebound apparatus[D]. US, 2009.
胡天明. 俄罗斯清雪车的性能分析与探讨[J]. 交通科技与经济, 2008, 10(2): 66-67.
HU Tianming. Performance analysis and discussion of a kind of snow plough produced by Russian[J]. Technology & Economy in Areas of Communications, 2008, 10(2): 66-67.
PLAZZI R. Device for lifing snow from road surface[D]. WO, 2010.
PAWLUK R E, CHEN Yuxiang, SHE Yuntong. Photovoltaic electricity generation loss due to snow-A literature review on influence factors, estimation, and mitigation[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 171-182.
FAY L, SHI Xianming. Environmental impacts of chemicals for snow and ice control: State of the knowledge[J]. Water, Air, & Soil Pollution, 2012, 223(5): 2751-2770.
张建国. 多功能清雪车前雪铲仿真分析与改进研究[D]. 长春: 吉林大学, 2006.
ZHANG Jianguo. Simulation analysis and improvement research on front snow shovel of multifunctional snow cleaner[D]. Changchun: Jilin University, 2006.
李曼. “高速高性能铁路线路除雪成套装备与技术”推开国际市场之门[J]. 科技创新与品牌, 2019(6): 46-49.
LI Man. “Complete snow removal equipment and technology for high-speed and high-performance railway lines” opens the door to the international market[J]. Sci-Tech Innovations and Brands, 2019(6): 46-49.
姚曙光,周雪飞,许平,等.高速列车排障装置安全防护性能演化综述[J]. 中南大学学报(自然科学版), 2022, 53(5): 1559-1571.
YAO Shuguang, ZHOU Xuefei, XU Ping, et al. Review on evolution of safety protection performance of high speed train obstacle deflector[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1559-1571.
许平, 陈凯, 邢杰, 等. 带隔板单锥薄壁方管结构吸能特性研究和多目标优化[J]. 铁道科学与工程学报, 2019, 16(1): 185-191.
XU Ping, CHEN Kai, XING Jie, et al. Energy distribution analysis and multi-objective optimization of a single tapered thin-walled square tubes with diaphragms[J]. Journal of Railway Science and Engineering, 2019, 16(1): 185-191.
赵士忠, 王晋乐, 田爱琴, 等. 动车组中间车钩动态力学性能研究[J]. 铁道科学与工程学报, 2018, 15(5): 1103-1110.
ZHAO Shizhong, WANG Jinle, TIAN Aiqin, et al. Dynamic performance study of high speed EMUs intermediate coupler[J]. Journal of Railway Science and Engineering, 2018, 15(5): 1103-1110.
车全伟, 姚曙光, 肖娴靓. 蜂窝轴向压缩实验与仿真分析方法研究[J]. 铁道科学与工程学报, 2017, 14(5): 1049-1055.
CHE Quanwei, YAO Shuguang, XIAO Xianliang. Study on honeycomb axial compression test and simulation analysis method[J]. Journal of Railway Science and Engineering, 2017, 14(5): 1049-1055.
刘仕超, 张发. 基于CAE的V形雪犁研发设计[J]. 设备管理与维修, 2019(1): 136-137.
LIU Shichao, ZHANG Fa. Research and design of V-shaped snow plow based on CAE[J]. Plant Maintenance Engineering, 2019(1): 136-137.
灾户真也, 中出孝次, 镰田慈. 数値計算によるスノープラウからの排雪の再現性の検討[C]// 雪氷研究大会講演要旨集, 2008, 2008: 126-126.
MASAYA S, KOJI N, YASUSHI K, et al. Numerical simulations of snowflow from snowplow[C]// JSSI & JSSE Joint Conference, 2008, 2008: 126-126.
大桥昭典, 镰田慈, 灾户真也, 等. スノープラウ排雪走行時の飛雪分布に関する研究[C]// 雪氷研究大会講演要旨集, 2008, 2008: 123-123.
AKINORI O, YASUSHI K, MASAYA S, et al. Study on distribution of flying snow from snowplow[C]// SSI & JSSE Joint Conference, 2008, 2008: 123-123.
罗晓晶. 动车组犁型排雪装置除雪过程仿真研究[D]. 长沙: 中南大学, 2012.
LUO Xiaojing. Research on snow removal process simulation of snowplow in EMU[D]. Changsha: Central South University, 2012.
DATT P, KAPIL J C, KUMAR A, et al. Experimental measurements of acoustical properties of snow and inverse characterization of its geometrical parameters[J]. Applied Acoustics, 2016, 101: 15-23.
FENG Ruofeng, FOURTAKAS G, ROGERS B D, et al. Large deformation analysis of granular materials with stabilized and noise-free stress treatment in smoothed particle hydrodynamics (SPH)[J]. Computers and Geotechnics, 2021, 138: 104356.
DEL CASTILLO E M, FÁVERO NETO A H, BORJA R I. A continuum meshfree method for sandbox-style numerical modeling of accretionary and doubly vergent wedges[J]. Journal of Structural Geology, 2021, 153: 104466.
British Standard Institution.Railway applications. Environmental conditions. Design guidance for rolling stock:PD CEN-TR 16251-2016[S]. London: British Standard Institution, 2016.
LING Liang, DHANASEKAR M, THAMBIRATNAM D, et al. Lateral impact derailment mechanisms, simulation and analysis[J]. International Journal of Impact Engineering, 2016, 94(1): 36-49.
KULAK R F, BOJANOWSKI C. Modeling of cone penetration test using SPH and MM-ALE approaches[C]// 8th European LS-DYNA Users Conference, 2011.
王成全, 周雄飞, 刘磊, 等. 正面斜碰撞下列车脱轨行为与机理研究 [J]. 铁道科学与工程学报, 2023, 20(5): 1821-1832.
WANG Chengquan, ZHOU Xiongfei, LIU Lei, et al. Study on derailment behavior and mechanism of trains under frontal oblique collision[J]. Journal of Railway Science and Engineering, 2023, 20(5): 1821-1832.
YAO Shuguang, ZHU Huifen, LIU Mingyang, et al. A study on the frontal oblique collision-induced derailment mechanism in subway vehicles[J]. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 2020, 234(6): 584-595.
NADAL M J. Theorie de la stabilite des locomotives. part II: mouvement de lacet[J]. Annales Des Mines, 1896, 10: 232.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构