1.广州地铁设计研究院股份有限公司,广东 广州 510000
2.中南大学 土木工程学院,湖南 长沙 410075
3.中国成达工程有限公司,四川 成都 610041
4.高速铁路建造技术国家工程研究中心,湖南 长沙 410075
侯文崎(1975—),女,湖北枣阳人,教授,博士,从事预制装配桥梁研究;E-mail:csuhouwenqi@csu.edu.cn
扫 描 看 全 文
何建梅,侯文崎,张玉果等.锥套锁紧连接预制装配桥墩抗震性能试验研究[J].铁道科学与工程学报,2023,20(11):4195-4209.
HE Jianmei,HOU Wenqi,ZHANG Yuguo,et al.Experimental study on seismic performance of prefabricated pier with taper sleeve locking connection[J].Journal of Railway Science and Engineering,2023,20(11):4195-4209.
何建梅,侯文崎,张玉果等.锥套锁紧连接预制装配桥墩抗震性能试验研究[J].铁道科学与工程学报,2023,20(11):4195-4209. DOI: 10.19713/j.cnki.43-1423/u.T20222149.
HE Jianmei,HOU Wenqi,ZHANG Yuguo,et al.Experimental study on seismic performance of prefabricated pier with taper sleeve locking connection[J].Journal of Railway Science and Engineering,2023,20(11):4195-4209. DOI: 10.19713/j.cnki.43-1423/u.T20222149.
节段有效连接是保证预制装配桥墩正常使用的关键。锥套锁紧连接是一种新型钢筋连接形式,操作简便,连接高效,但尚无应用于预制装配桥墩的详细研究资料。以某拟建轨道交通高架桥梁预制装配桥墩为工程背景,考虑现浇连接(CIP),锥套锁紧连接(TS)和套筒灌浆连接(GS)3种方式,设计制作了3个1︰3的桥墩缩尺试验模型,完成了拟静力试验和数值仿真分析,对比了不同连接方式桥墩的破坏形式、承载能力、刚度退化和自恢复能力。研究结果表明:锥套锁紧连接应用于预制装配桥墩,其等同现浇程度显著优于套筒灌浆连接。3种连接方式的试件最终破坏形态均为典型弯曲破坏,表现为墩身与承台接缝处的裂缝贯通以及柱角区域混凝土压溃,但现浇连接和锥套锁紧连接试件的裂缝沿墩身基本呈环向均匀分布,套筒灌浆连接试件的裂缝较为集中于套筒连接区段接缝处。锥套锁紧连接试件承载能力、塑性转动能力基本等同现浇,残余位移和自恢复能力次之,耗能能力最差;套筒灌浆连接试件的承载能力和耗能能力较前二者都高,其中承载能力较锥套锁紧连接提升了34.3%,但延性系数降低了23.8%。相比于增大恒载轴压比,增大墩身纵筋配筋率可有效提升锥套锁紧连接试件耗能能力和承载能力,同时较小程度损失试件的延性和自恢复能力。研究成果为锥套锁紧连接预制装配桥墩的设计和应用提供了详细技术参考。
Effective connection between segments is critical to ensure the normal service of prefabricated pier. Taper-sleeve locking is a new type of reinforcement connection, which is easy to operate and efficient to connect. However, there is no detailed research data on its application in prefabricated pier. Based on the engineering background of prefabricated piers of a proposed rail transit viaduct bridge, three test specimens with reduced scale of 1:3 were designed and fabricated, considering different connection type, namely cast-in-place connection (CIP), taper-sleeve locking connection (TS) and sleeve grouting connection (GS). The pseudo-static tests and numerical simulation analysis were completed. The failure forms, bearing capacity, stiffness degradation and self-recovery ability of the specimens were compared. Results show that TS connection is significantly more similar to CIP connection than GS connection. The final failure forms of the three specimens are typical bending failure, presented with the through cracks around the joint section between pier and cap, and concrete collapse in the column angle area. However, the cracks of CIP and TS specimen are uniformly distributed in the ring direction along the pier Those of GS specimen are more concentrated in the joint section. The load-bearing capacity and plastic rotation capacity of TS specimen are basically the same as those of CIP specimen, followed by the residual displacement and self-restoring capacity, and the energy dissipation capacity is the worst among the three specimens. The bearing capacity and energy dissipation capacity of GS specimen is both higher than those of the previous two. Compared with TS specimen, the bearing capacity of GS specimen is 34.3% higher while the ductility coefficient is 23.8% lower. Compared with the axial compression ratioincrease, the longitudinal reinforcement ratio increase can effectively improve the energy dissipation capacity and bearing capacity of TS specimen with little losing the ductility and self-recovery ability. The research results of this paper can provide a detailed technical reference for the design and application of prefabricated pier with taper-sleeve locking connection.
预制装配桥墩锥套锁抗震性能拟静力试验参数分析
prefabricated assembly pierstaper sleeve locking connectionseismic performancepseudo static testparametric analysis
王景全, 王震, 高玉峰, 等. 预制桥墩体系抗震性能研究进展: 新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
WANG Jingquan, WANG Zhen, GAO Yufeng, et al. Research progress on seismic performance of precast pier system: new materials, new ideas and new applications[J]. Engineering Mechanics, 2019, 36(3): 1-23.
KIM D H, MOON D Y, KIM M K, et al. Experimental test and seismic performance of partial precast concrete segmental bridge column with cast-in-place base[J]. Engineering Structures, 2015, 100: 178-188.
WHITE S, PALERMO A. Quasi-static testing of posttensioned nonemulative column-footing connections for bridge piers[J]. Journal of Bridge Engineering, 2016, 21(6): 1-13.
梁岩, 李庆贺, 罗小勇, 等. 高速铁路桥梁预制节段拼装桥墩抗震性能分析[J]. 铁道科学与工程学报, 2022, 19(6): 1492-1501.
LIANG Yan, LI Qinghe, LUO Xiaoyong, et al. Seismic resistance capacity of applying PSBC in high-speed railway bridge[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1492-1501.
HABER Z B, SAIIDI M S, SANDERS D H. Seismic performance of precast columns with mechanically spliced column-footing connections[J]. ACI Structural Journal, 2014, 111(3): 639-650.
MATSUMOTO E E. Emulative precast bent cap connections for seismic regions: component tests—cap pocket full ductility specimen (Unit 3) [R]. Ecs Rep. No. Ecs-Csus-2009-03, California State Univ. , Sacramento, Ca, 2009.
WANG Zhiqiang, QU Hongya, LI Tiantian, et al. Quasi-static cyclic tests of precast bridge columns with different connection details for high seismic zones[J]. Engineering Structures, 2018, 158: 13-27.
王志强, 卫张震, 魏红一, 等. 预制拼装联接件形式对桥墩抗震性能的影响[J]. 中国公路学报, 2017, 30(5): 74-80.
WANG Zhiqiang, WEI Zhangzhen, WEI Hongyi, et al. Influence of prefabricated connecting parts on seismic performance of pier[J]. China Journal of Highway and Transport, 2017, 30(5): 74-80.
ZHOU Qiang, LIU Yuqing, LI Yongjun. Pseudostatic behavior of precast piers with composite pier-pile cap connections: experimental investigation[J]. Journal of Bridge Engineering, 2022, 27(5): 1-15.
何云武, 李嘉, 江建, 等. 装配式桥墩与承台新型连接抗震性能试验[J]. 土木工程与管理学报, 2021, 38(6): 58-64.
HE Yunwu, LI Jia, JIANG Jian, et al. Experimental on seismic performance of new connection of prefabricated pier and cap[J]. Journal of Civil Engineering and Management, 2021, 38(6): 58-64.
XU Junming, JIA Yanmin, LIANG Dongwei. Shaking table test on single segment prefabricated concrete bridge pier connected by grouting sleeve[J]. International Journal of Structural Integrity, 2022, 13(1): 164-184.
徐文靖, 马骉, 黄虹, 等. 套筒连接的预制拼装桥墩抗震性能研究[J]. 工程力学, 2020, 37(10): 93-104.
XU Wenjing, MA Biao, HUANG Hong, et al. The seismic performance of precast bridge piers with grouted sleeves[J]. Engineering Mechanics, 2020, 37(10): 93-104.
卓为顶. 配置高强钢筋的预制拼装桥墩滞回性能与自恢复特性研究[D]. 南京: 东南大学, 2019.
ZHUO Weiding. Hysteretic energy dissipation and seismic resiliency of precast piers with high-strength bar[D]. Nanjing: Southeast University, 2019.
葛继平, 闫兴非, 王志强. 灌浆套筒和预应力筋连接的预制拼装桥墩的抗震性能[J]. 交通运输工程学报, 2018, 18(2): 42-52.
GE Jiping, YAN Xingfei, WANG Zhiqiang. Seismic performance of prefabricated assembled pier with grouted sleeve and prestressed reinforcements[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 42-52.
葛继平, 闫兴非, 王志强. 2段式预制拼装预应力混凝土桥墩的抗震性能[J]. 铁道科学与工程学报, 2017, 14(11): 2390-2398.
GE Jiping, YAN Xingfei, WANG Zhiqiang. Seismic performance analysis of two-segment bridge columns with prestressing bars[J]. Journal of Railway Science and Engineering, 2017, 14(11): 2390-2398.
席田, 邹烽, 周崇旭. 锥套锁紧式钢筋接头技术的应用[J]. 建筑施工, 2020, 42(7): 1163-1165.
XI Tian, ZOU Feng, ZHOU Chongxu. Application of taper sleeve locking type steel bar joint technology[J]. Building Construction, 2020, 42(7): 1163-1165.
徐瑞榕. 桥梁基础钢筋笼直螺纹连接的常见问题及锥套接头技术[J]. 工程质量, 2017, 35(5): 4-8.
XU Ruirong. The common problems of the straight thread connection of the steel cage in the bridge foundation and the technology of the taper sleeve joint[J]. Construction Quality, 2017, 35(5): 4-8.
中国公路学会. 公路桥梁锥套锁紧钢筋接头技术指南: T/CHTS 10005—2018[S]. 北京: 人民交通出版社股份有限公司, 2018.
China Highway and Transportation Society. Technical guideline for tapered sleeve locking-type mechanical splicing of steel reinforcing bars used in highway bridges: T/CHTS 10005—2018[S]. Beijing: People’s Communications Press Co., Ltd, 2018.
周兴林. 预制拼装桥墩接头型式现状及探索[J]. 城市道桥与防洪, 2020(5): 165-169.
ZHOU Xinglin. Current situation and exploration of prefabricated pier joint type[J]. Urban Roads Bridges & Flood Control, 2020(5): 165-169.
中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019.
PARK R. Evaluation of ductility of structures and structural assemblages from laboratory testing[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 1989, 22(3): 155-166.
CULMO M P, MARSH L, STANTON J, et al. Recommended AASHTO guide specifications for ABC design and construction[M]. Washington, D.C.: Transportation Research Board, 2018.
中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011.
中华人民共和国住房和城乡建设部. 城市轨道交通结构抗震设计规范: GB 50909—2014[S]. 北京: 中国标准出版社, 2014.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for seismic design of urban rail transit structures: GB 50909—2014[S]. Beijing: Standards Press of China, 2014.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构